Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (9): 4882-4893.DOI: 10.16085/j.issn.1000-6613.2021-0243
Previous Articles Next Articles
YANG Bolong(), HAN Qing, XIANG Zhonghua()
Received:
2021-02-01
Revised:
2021-06-07
Online:
2021-09-13
Published:
2021-09-05
Contact:
XIANG Zhonghua
通讯作者:
向中华
作者简介:
杨博龙(1993—),男,博士研究生,研究方向为燃料电池。E-mail:基金资助:
CLC Number:
YANG Bolong, HAN Qing, XIANG Zhonghua. Progress of membrane electrode structure and its design for proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4882-4893.
杨博龙, 韩清, 向中华. 质子交换膜燃料电池膜电极结构与设计研究进展[J]. 化工进展, 2021, 40(9): 4882-4893.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0243
1 | WANG G L, ZOU L L, HUANG Q H, et al. Multidimensional nanostructured membrane electrode assemblies for proton exchange membrane fuel cell applications[J]. Journal of Materials Chemistry A, 2019, 7(16): 9447-9477. |
2 | LIU J, YU H Y, ZHANG T H, et al. Honeycomb-like self-supported Co-N-C catalysts with an ultra-stable structure: highly efficient electrocatalysts toward oxygen reduction reaction in alkaline and acidic solutions[J]. ACS Applied Energy Materials, 2021, 4(3): 2522-2530. |
3 | LI H X, WEN Y L, JIANG M, et al. Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction[J]. Advanced Functional Materials, 2021, 31(22): 2011289. |
4 | ZHENG L, DONG Y Y, CHI B, et al. UIO-66-NH2-derived mesoporous carbon catalyst co-doped with Fe/N/S as highly efficient cathode catalyst for PEMFCs[J]. Small, 2019, 15(4): 1803520. |
5 | ZHU M Z, ZHAO C, LIU X K, et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells[J]. ACS Catalysis, 2021, 11(7): 3923-3929. |
6 | 李英, 张香平. 用于高温质子交换膜燃料电池的聚合物电解质膜研究进展[J]. 化工进展, 2018, 37(9): 3446-3453. |
LI Ying, ZHANG Xiangping. Research progress of polymer electrolyte membrane for high temperature proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3446-3453. | |
7 | SALCEDO I R, COLODRERO R M P, BAZAGA-GARCÍA M, et al. Phase transformation dynamics in sulfate-loaded lanthanide triphosphonates. proton conductivity and application as fillers in PEMFCs[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15279-15291. |
8 | SONG Z X, WANG B Q, CHENG N C, et al. Atomic layer deposited tantalum oxide to anchor Pt/C for a highly stable catalyst in PEMFCs[J]. Journal of Materials Chemistry A, 2017, 5(20): 9760-9767. |
9 | 国务院办公厅. 关于印发《新能源汽车产业发展规划(2021—2035年)》的通知[EB/OL]. [2020-10-20]. . |
General Office of the State Council. Notice on the issuance of the《New energy vehicle industry development plan (2021—2035)》[EB/OL][2020-10-20]. . | |
10 | ZHAO W Y, YE Y K, JIANG W J, et al. Mesoporous carbon confined intermetallic nanoparticles as highly durable electrocatalysts for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2020, 8(31): 15822-15828. |
11 | DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51. |
12 | DE LONG Y, YE F H, SHI L, et al. N, P, and S tri-doped holey carbon as an efficient electrocatalyst for oxygen reduction in whole pH range for fuel cell and zinc-air batteries[J]. Carbon, 2021, 179: 365-376. |
13 | LEI Y P, WANG Q C, PENG S J, et al. Electrospun inorganic nanofibers for oxygen electrocatalysis: design, fabrication, and progress[J]. Advanced Energy Materials, 2020, 10(45): 1902115. |
14 | FU X G, GAO R, JIANG G P, et al. Evolution of atomic-scale dispersion of FeNxin hierarchically porous 3D air electrode to boost the interfacial electrocatalysis of oxygen reduction in PEMFC[J]. Nano Energy, 2021, 83: 105734. |
15 | STEINBACH A. Final report-high performance, durable, low cost membrane electrode assemblies for transportation applications[R]. Office of Scientific and Technical Information (OSTI), 2017. |
16 | WANG X, JIA Y, MAO X, et al. Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis[J]. Advanced Materials, 2020, 32(16): 2000966. |
17 | FU X G, LI N, REN B H, et al. Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction performance in proton exchange membrane fuel cell[J]. Advanced Energy Materials, 2019, 9(11): 1803737. |
18 | QIAO M F, WANG Y, WANG Q, et al. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells[J]. Angewandte Chemie, 2020, 132(7): 2710-2716. |
19 | ZHANG H G, CHUNG H T, CULLEN D A, et al. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites[J]. Energy & Environmental Science, 2019, 12(8): 2548-2558. |
20 | PARK S, LEE J W, POPOV B N. Effect of carbon loading in microporous layer on PEM fuel cell performance[J]. Journal of Power Sources, 2006, 163(1): 357-363. |
21 | RALPH T R, HARDS G A, KEATING J E, et al. Low cost electrodes for proton exchange membrane fuel cells: performance in single cells and Ballard stacks[J]. Journal of the Electrochemical Society, 1997, 144(11): 3845-3857. |
22 | HOTTINEN T, MIKKOLA M, MENNOLA T, et al. Titanium sinter as gas diffusion backing in PEMFC[J]. Journal of Power Sources, 2003, 118(1/2): 183-188. |
23 | SONG J M, CHA S Y, LEE W M. Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method[J]. Journal of Power Sources, 2001, 94(1): 78-84. |
24 | JORDAN L R, SHUKLA A K, BEHRSING T, et al. Effect of diffusion-layer morphology on the performance of polymer electrolyte fuel cells operating at atmospheric pressure[J]. Journal of Applied Electrochemistry, 2000, 30(6): 641-646. |
25 | PASSALACQUA E, SQUADRITO G, LUFRANO F, et al. Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes[J]. Journal of Applied Electrochemistry, 2001, 31(4): 449-454. |
26 | PARK S, LEE J W, POPOV B N. Effect of PTFE content in microporous layer on water management in PEM fuel cells[J]. Journal of Power Sources, 2008, 177(2): 457-463. |
27 | ZHANG B Q, WANG S Y, FAN W J, et al. Photoassisted oxygen reduction reaction in H2-O2 fuel cells[J]. Angewandte Chemie International Edition, 2016, 55(47): 14748-14751. |
28 | WANG Y J, LONG W, WANG L L, et al. Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals[J]. Energy & Environmental Science, 2018, 11(2): 258-275. |
29 | WANG L K, ZHOU Y C, TIMOSHENKO J, et al. Designing nanoplatelet alloy/nafion catalytic interface for optimization of PEMFCs: performance, durability, and CO resistance[J]. ACS Catalysis, 2019, 9(2): 1446-1456. |
30 | LEE E, PARK C, LEE D W, et al. Tunable synthesis of N, C-codoped Ti3+-enriched titanium oxide support for highly durable PEMFC cathode[J]. ACS Catalysis, 2020, 10(20): 12080-12090. |
31 | SHOKUHFAR A, NEJADSEYFI O, ZOLRIASATEIN A. A numerical study of the influence of gas diffusion layer porosity on cell performance of counter flow proton exchange membrane fuel cells[J]. Iranica Journal of Energy & Environment, 2013, 4(2): 126-129. |
32 | SUN H, LIU H T, GUO L J. PEM fuel cell performance and its two-phase mass transport[J]. Journal of Power Sources, 2005, 143(1/2): 125-135. |
33 | 诸葛伟林, 张扬军, 明平文, 等. 质子交换膜燃料电池三维气液两相流数值模拟[J]. 清华大学学报(自然科学版), 2006, 46(2): 252-256. |
ZHUGE Weilin, ZHANG Yangjun, MING Pingwen, et al. Numerical simulation of three dimensional gas/liquid two-phase flow in a proton exchange membrane fuel cell[J]. Journal of Tsinghua University (Science and Technology), 2006, 46(2): 252-256. | |
34 | MENG H, WANG C Y. Model of two-phase flow and flooding dynamics in polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2005, 152(9): A1733. |
35 | YIOTIS A G, KAINOURGIAKIS M E, CHARALAMBOPOULOU G C, et al. Microscale characterisation of stochastically reconstructed carbon fiber-based gas diffusion layers; effects of anisotropy and resin content[J]. Journal of Power Sources, 2016, 320: 153-167. |
36 | GÖBEL M, GODEHARDT M, SCHLADITZ K. Multi-scale structural analysis of gas diffusion layers[J]. Journal of Power Sources, 2017, 355: 8-17. |
37 | ZHOU X, NIU Z Q, BAO Z M, et al. Two-phase flow in compressed gas diffusion layer: finite element and volume of fluid modeling[J]. Journal of Power Sources, 2019, 437: 226933. |
38 | 黄鸿, 黄鲲. 碳纤维复合材料与碳纤维纸生产工艺[J]. 中华纸业, 2014, 35(8): 6-12. |
HUANG Hong, HUANG Kun. Carbon fiber composite materials and carbon fibber paper technology[J]. China Pulp & Paper Industry, 2014, 35(8): 6-12. | |
39 | GHASEMI M, CHOI J, JU H. Performance analysis of Pt/TiO2/C catalyst using a multi-scale and two-phase proton exchange membrane fuel cell model[J]. Electrochimica Acta, 2021, 366: 137484. |
40 | TSAI L C, CHIN T K, LIU W S, et al. Fabrication of VN/TaC composites with dual functions of VN as a catalyst support and a cocatalyst for improved PEMFC performance[J]. ACS Applied Energy Materials, 2020, 3(12): 11610-11616. |
41 | LI J K, BRÜLLER S, SABARIRAJAN D C, et al. Designing the 3D architecture of PGM-free cathodes for H2/air proton exchange membrane fuel cells[J]. ACS Applied Energy Materials, 2019, 2(10): 7211-7222. |
42 | LIU Q T, LI Y C, ZHENG L R, et al. Sequential synthesis and active-site coordination principle of precious metal single-atom catalysts for oxygen reduction reaction and PEM fuel cells[J]. Advanced Energy Materials, 2020, 10(20): 2000689. |
43 | HE Y H, GUO H, HWANG S, et al. Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells[J]. Advanced Materials, 2020, 32(46): 2003577. |
44 | KAMBE T, SAKAMOTO R, KUSAMOTO T, et al. Redox control and high conductivity of nickel bis (dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator[J]. Journal of the American Chemical Society, 2014, 136(41): 14357-14360. |
45 | LEE S H, KIM J, CHUNG D Y, et al. Design principle of Fe-N-C electrocatalysts: how to optimize multimodal porous structures?[J]. Journal of the American Chemical Society, 2019, 141(5): 2035-2045. |
46 | GUO J N, LI B J, ZHANG Q Y, et al. Highly accessible atomically dispersed Fe-Nx sites electrocatalyst for proton-exchange membrane fuel cell[J]. Advanced Science, 2021, 8(5): 2002249. |
47 | HOU Y Z, DENG H, PAN F W, et al. Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell[J]. Applied Energy, 2019, 253: 113561. |
48 | EBRAHIMI S, ROSHANDEL R, VIJAYARAGHAVAN K. Power density optimization of PEMFC cathode with non-uniform catalyst layer by simplex method and numerical simulation[J]. International Journal of Hydrogen Energy, 2016, 41(47): 22260-22273. |
49 | SABHARWAL M, PANT L M, PUTZ A, et al. Analysis of catalyst layer microstructures: from imaging to performance[J]. Fuel Cells, 2016, 16(6): 734-753. |
50 | BARREIROS SALVADO M, SCHOTT P, GUÉTAZ L, et al. Towards the understanding of transport limitations in a proton-exchange membrane fuel cell catalyst layer: performing agglomerate scale direct numerical simulations on electron-microscopy-based geometries[J]. Journal of Power Sources, 2021, 482: 228893. |
51 | DENG Y J, CHI B, TIAN X L, et al. g-C3N4 promoted MOF derived hollow carbon nanopolyhedra doped with high density/fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells[J]. Journal of Materials Chemistry A, 2019, 7(9): 5020-5030. |
52 | TONG L, WANG Y C, CHEN M X, et al. Hierarchically porous carbons as supports for fuel cell electrocatalysts with atomically dispersed Fe-Nx moieties[J]. Chemical Science, 2019, 10(35): 8236-8240. |
53 | SANDSTRÖM R, ANNAMALAI A, BOULANGER N, et al. Evaluation of fluorine and sulfonic acid co-functionalized graphene oxide membranes under hydrogen proton exchange membrane fuel cell conditions[J]. Sustainable Energy & Fuels, 2019, 3(7): 1790-1798. |
54 | KIM J Q, SO S, KIM H T, et al. Highly ordered ultrathin perfluorinated sulfonic acid ionomer membranes for vanadium redox flow battery[J]. ACS Energy Letters, 2021, 6(1): 184-192. |
55 | SAVAGE J, TSE Y L S, VOTH G A. Proton transport mechanism of perfluorosulfonic acid membranes[J]. The Journal of Physical Chemistry C, 2014, 118(31): 17436-17445. |
56 | KWON S H, KANG H S, LEE J H, et al. Investigating the influence of the side-chain pendants of perfluorosulfonic acid membranes in a PEMFC by molecular dynamics simulations[J]. Materials Today Communications, 2019, 21: 100625. |
57 | JOURDANI M, MOUNIR H, MARJANI A E. Numerical simulation of the performance of proton exchange membrane fuel cell with different membrane geometries[J]. Journal of Mechanical Engineering and Sciences, 2017, 11(3): 2941-2951. |
58 | TSUKAMOTO T, AOKI T, KANESAKA H, et al. Three-dimensional numerical simulation of full-scale proton exchange membrane fuel cells at high current densities[J]. Journal of Power Sources, 2021, 488: 229412. |
59 | KLINGELE M, BREITWIESER M, ZENGERLE R, et al. Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells[J]. Journal of Materials Chemistry A, 2015, 3(21): 11239-11245. |
60 | KOH J K, JEON Y K, CHO Y, et al. A facile preparation method of surface patterned polymer electrolyte membranes for fuel cell applications[J]. Journal of Materials Chemistry A, 2014, 2(23): 8652-8659. |
[1] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[2] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[3] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[4] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[5] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[6] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[7] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[8] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[9] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[10] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[11] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[12] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[13] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[14] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[15] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |