Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 4083-4090.DOI: 10.16085/j.issn.1000-6613.2020-1696
• Resources and environmental engineering • Previous Articles Next Articles
DING Xin1(), GAO Kechang1, HAO Erguo2, HAN Yanhui2, WU Yazhao2, JIAO Weizhou1(), LIU Youzhi1
Received:
2020-08-24
Revised:
2020-09-18
Online:
2021-07-19
Published:
2021-07-06
Contact:
JIAO Weizhou
丁鑫1(), 高克昌1, 郝二国2, 韩艳辉2, 吴亚朝2, 焦纬洲1(), 刘有智1
通讯作者:
焦纬洲
作者简介:
丁鑫(1995—),男,硕士研究生。 E-mail:基金资助:
CLC Number:
DING Xin, GAO Kechang, HAO Erguo, HAN Yanhui, WU Yazhao, JIAO Weizhou, LIU Youzhi. Treatment of low concentration ammonia nitrogen wastewater by high gravity enhanced breakpoint chlorination[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 4083-4090.
丁鑫, 高克昌, 郝二国, 韩艳辉, 吴亚朝, 焦纬洲, 刘有智. 超重力强化折点氯化法处理低浓度氨氮废水[J]. 化工进展, 2021, 40(7): 4083-4090.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1696
设备参数 | 参数值 |
---|---|
转子外径 | 90mm |
转子内径 | 30mm |
转子高度 | 30mm |
填料密度 | 0.42g·cm-3 |
填料的孔隙率 | 0.41 |
设备参数 | 参数值 |
---|---|
转子外径 | 90mm |
转子内径 | 30mm |
转子高度 | 30mm |
填料密度 | 0.42g·cm-3 |
填料的孔隙率 | 0.41 |
反应器 | 一氯胺 | 二氯胺 | 游离余氯 | 总余氯 |
---|---|---|---|---|
搅拌反应器 | 0.18 | 2.63 | 5.61 | 8.42 |
鼓泡反应器 | 0.11 | 2.36 | 2.7 | 5.17 |
RPB | 0.12 | 0.997 | 0.063 | 1.18 |
反应器 | 一氯胺 | 二氯胺 | 游离余氯 | 总余氯 |
---|---|---|---|---|
搅拌反应器 | 0.18 | 2.63 | 5.61 | 8.42 |
鼓泡反应器 | 0.11 | 2.36 | 2.7 | 5.17 |
RPB | 0.12 | 0.997 | 0.063 | 1.18 |
1 | 钱前, 史玉龙, 杨红军, 等. 废水中氨氮脱除的技术概述[J]. 安徽化工, 2019, 45(6): 8-10, 17. |
QIAN Qian, SHI Yulong, YANG Hongjun, et al. Technical overview of treatment for high NH3-N wastewater[J]. Anhui Chemical Industry, 2019, 45(6): 8-10, 17. | |
2 | WU Zhenyu, ZHU Weiping, LIU Yang, et al. An integrated three-dimensional electrochemical system for efficient treatment of coking wastewater rich in ammonia nitrogen[J]. Chemosphere, 2020, 246: 125703. |
3 | 于小囡. 好氧颗粒污泥处理高氨氮废水及机理研究[D]. 上海: 复旦大学, 2013. |
YU Xiaonan. Treatment of high ammonia nitrogen wastewater by aerobic granular sludge and its mechanism[D]. Shanghai: Fudan University, 2013. | |
4 | 韩静. 高浓度氨氮废水的危害及主要治理技术[J]. 北方环境, 2011, 23(12): 120-122. |
HAN Jing. The dangers of high concentration ammonia nitrogen wastewater and wastewater treatment technology[J]. Northern Environment, 2011, 23(12): 120-122. | |
5 | 冯晓西, 乌锡康. 精细化工废水治理技术[M]. 北京: 化学工业出版社, 2000: 339. |
FENG Xiaoxi, WU Xikang. Treatment technology of fine chemical wastewater[M]. Beijing: Chemical Industry Press, 2000: 339. | |
6 | 王越, 程婧雯, 汪伯宁, 等. 微气泡曝气对模拟黑臭水体的治理效果[J]. 净水技术, 2018, 37(6): 108-112. |
WANG Yue, CHENG Jingwen, WANG Boning, et al. Effect of microbubble aeration on simulated black and odorous water body[J]. Water Purification Technology, 2018, 37(6): 108-112. | |
7 | 李家熙. 人体硒缺乏与过剩的地球化学环境特征及其预测[M]. 北京: 地质出版社, 2000: 103-105. |
LI Jiaxi. Prediction and geochemical environmental character of human selenium imbalances[M]. Beijing: Geological Press, 2000: 103-105. | |
8 | 陶长元, 刘作华, 范兴. 电解锰节能减排理论与工程应用[M]. 重庆: 重庆大学出版社, 2018: 76. |
TAO Changyuan,LIU Zuohua,FAN Xing. Theory and engineering application of energy saving and emission reduction of electrolytic manganese[M]. Chongqing: Chongqing University Press, 2018: 76. | |
9 | 李凯, 宁平, 梅毅. 化工行业大气污染控制[M]. 北京: 冶金工业出版社, 2016: 161-165. |
LI Kai, NING Ping,MEI Yi. Air pollution control in the chemical industry[M]. Beijing: Metallurgical Industry Press, 2016: 161-165. | |
10 | ZHU Lei, GUO Zhiyong, HUA Xiuyi, et al. Ammonia nitrogen removal from chlor-alkali chemical industry wastewater by magnesium ammonium phosphate precipitation method[J]. Advanced Materials Research, 2012, 573/574: 1096-1100. |
11 | YAN Yixin, GAO Jianlei, WU Jianping. Application of chemical precipitation in treating ammonia nitrogen from excess sludge liquor[J]. Advanced Materials Research, 2013, 634/635/636/637/638: 204-208. |
12 | 罗小燕, 陈云嫩, 熊昌狮, 等. 稀土浸矿氨氮废水的吹脱试验研究[J]. 工业水处理, 2016, 36(2): 33-35, 39. |
LUO Xiaoyan, CHEN Yunnen, XIONG Changshi, et al. Experimental research on the air stripping method for the treatment of ammonia nitrogen wastewater in leaching rare earth[J]. Industrial Water Treatment, 2016, 36(2): 33-35, 39. | |
13 | LI Anfeng, NING Yanying, XU Wenjiang, et al. Air stripping of ammoniacal nitrogen from fecal sewage using a fluidized bed[J]. Advanced Materials Research, 2014, 926/927/928/929/930: 4209-4213. |
14 | ZHANG Wenlong, FU Rao, WANG Li, et al. Rapid removal of ammonia nitrogen in low-concentration from wastewater by amorphous sodium titanate nano-particles[J]. Science of the Total Environment, 2019, 668: 815-824. |
15 | 陈敬员, 余中山, 程燕. 离子交换法处理废水中的氨氮[J]. 上海化工, 2013, 38(5): 1-4. |
CHEN Jingyuan, YU Zhongshan, CHENG Yan. Treatment of ammonia-nitrogen in wastewater using ion exchange method[J]. Shanghai Chemical Industry, 2013, 38(5): 1-4. | |
16 | 王冠平, 方喜玲, 施汉昌, 等. 膜吸收法处理高氨氮废水的研究[J]. 环境污染治理技术与设备, 2002(7): 56-60. |
WANG Guanping, FANG Xiling, SHI Hanchang, et al. Study of membrane absorption-desorption process for the treatment of high strength ammonia wastewater[J]. Technigues and Equipment for Environmental Pollution Control, 2002(7): 56-60. | |
17 | MANSER Nathan D, WANG Meng, ERGAS Sarina J, et al. Biological nitrogen removal in a photosequencing batch reactor with an algal-nitrifying bacterial consortium and anammox granules[J]. Environmental Science & Technology Letters, 2016, 3(4): 175-179. |
18 | 姜镭. 氨氮废水处理技术比较[J]. 黑龙江环境通报, 2018, 42(1): 67-69. |
JIANG Lei. Comparison of treatment technologies of wastewater containing ammonia nitrogen[J]. Heilongjiang Environmental Journal, 2018, 42(1): 67-69. | |
19 | 赵贤广, 杨世慧, 陈方荣, 等. 吹脱法去除垃圾渗滤液中氨氮的技术进展[J]. 现代化工, 2019, 39(6): 80-84. |
ZHAO Xianguang, YANG Shihui, CHEN Fangrong, et al. Technical progress in removal of ammonia nitrogen from landfill leachate by air stripping[J]. Modern Chemical Industry, 2019, 39(6): 80-84. | |
20 | 刘有智, 张琳娜, 李裕, 等. 卤水提溴工艺中超重力空气吹出技术研究[J]. 现代化工, 2009, 29(8): 78-81. |
LIU Youzhi, ZHANG Linna, LI Yu, et al. Study on high gravity air stripping technology in the extraction of bromine from brine[J]. Modern Chemical Industry, 2009, 29(8): 78-81. | |
21 | 王媛媛, 李素芳, 徐翔, 等. 超重力法处理含氨废水技术[J]. 石油化工环境保护, 2006(4): 7-10, 67. |
WANG Yuanyuan, LI Sufang, XU Xiang, et al. The high-gravity technology for waste water ammonia removal[J]. Environmental Protection in Petrochemical Industry, 2006(4): 7-10, 67. | |
22 | CHEN Yihung, CHANG Chingyuan, SU Weiling, et al. Ozonation of Cl Reactive Black 5 using rotating packed bed and stirred tank reactor [J]. Journal of Chemical Technology & Biotechnology, 2005, 80(1): 68-75. |
23 | 郭亮. 超重力强化O3/H2O2氧化降解含硝基苯废水的研究[D]. 太原: 中北大学, 2015. |
GUO Liang. Degradation of nitrobenzene-containing wastewater by O3/H2O2 enhanced by high gravity[D]. Taiyuan: North University of China, 2015. | |
24 | CHANG Chiachi, CHIU Chunyu, CHANG Chingyuan, et al. Pt-catalyzed ozonation of aqueous phenol solution using high-gravity rotating packed bed[J]. Journal of Hazardous Materials, 2009, 168(2/3): 649-655. |
25 | GE Deming, ZENG Zequan, AROWO Moses, et al. Degradation of methyl orange by ozone in the presence of ferrous and persulfate ions in a rotating packed bed[J]. Chemosphere, 2016, 146: 413-418. |
26 | 李颖. 垃圾渗滤液处理技术及工程实例[M]. 北京: 中国环境科学出版社, 2008: 368-369. |
LI Ying. Landfill leachate treatment technology and engineering example[M]. Beijing: China Environment Science Press, 2008: 368-369. | |
27 | 王翔朴. 卫生学大辞典[M]. 北京: 华夏出版社, 1999: 45-46. |
WANG Xiangpiao. Hygienics dictionary[M]. Beijing: Huaxia Publishing House, 1999: 45-46. | |
28 | 孙锦宜. 含氮废水处理技术与应用[M]. 北京: 化学工业出版社, 2003:164-254. |
SUN Jinyi. Treatment technology and application of nitrogenous wastewater[M]. Beijing: Chemical Industry Press, 2003: 164-254. | |
29 | 宋卫锋, 骆定法, 王孝武, 等. 折点氯化法处理高NH3-N含钴废水试验与工程实践[J]. 环境工程, 2006, 24(5): 12-13. |
SONG Weifeng, LUO Dingfa, WANG Xiaowu, et al. Test and project practice on treatment of high NH3-N and Co containing wastewater with break point chlorination[J]. Environmental Engineering, 2006, 24(5): 12-13. | |
30 | 刘有智. 超重力化工过程与技术[M]. 北京: 国防工业出版社, 2009: 2-4. |
LIU Youzhi. Chemical engineering process and technology in high gravity[M]. Beijing: National Defense Industry Press, 2009: 2-4. | |
31 | 张军, 郭锴, 郭奋, 等. 旋转床内液体流动的实验研究[J]. 高校化学工程学报, 2000, 14(4): 378-381. |
ZHANG Jun, GUO Kai, GUO Fen, et al. Experimental study about flow of liquid in rotating packed bed[J]. Journal of Chemical Engineering of Chinese Universities, 2000, 14(4): 378-381. | |
32 | 俸志荣, 焦纬洲, 刘有智, 等. 超重力强化吹脱与O3/H2O2联合处理含高浓度硝基苯废水[J]. 含能材料, 2015, 23(6): 589-593. |
FENG Zhirong, JIAO Weizhou, LIU Youzhi, et al. Combined treatment of air stripping O3 and H2O2 oxidation for high concentration nitrobenzenecontaining wastewater enhanced by high gravity technology[J]. Chinese Journal of Energetic Materials, 2015, 23(6): 589-593. | |
33 | 周相武, 汪晓军, 刘姣, 等. 次氯酸钠溶液的氧化性研究[J]. 氯碱工业, 2006, 42(8): 28-30. |
ZHOU Xiangwu, WANG Xiaojun, LIU Jiao, et al. Studies on the oxidizing property of sodium hypochlorite solution[J]. Chlor Alkali-Industry, 2006, 42(8): 28-30. | |
34 | QIAO Jingjuan, LUO Shuai, YANG Peizhen, et al. Degradation of Nitrobenzene-containing wastewater by ozone/persulfate oxidation process in a rotating packed bed[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99: 1-8. |
35 | 李航天. 逆流旋转填料床中液体的流动特性研究[D]. 太原: 中北大学, 2019. |
LI Hangtian. Study on flow characteristics of liquid in countercurrent rotating packed bed[D]. Taiyuan: North University of China, 2019. | |
36 | 宁方敏. 折点氯化法处理化工皂化污水中氨氮的实验研究[J]. 化工设计通讯, 2020, 46(5): 227,257. |
NING Fangmin. Experimental study on the treatment of ammonia nitrogen in saponification wastewater by break point chlorination[J]. Chemical Engineering Design Communications, 2020, 46(5): 227, 257. | |
37 | KIM Jinsu, LEE Jiyoung, CHOI Seung Kyu, et al. Nitrification of low concentration ammonia nitrogen using zeolite biological aerated filter (ZBAF)[J]. Environmental Engineering Research, 2020, 25(4): 554-560. |
[1] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[2] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[3] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[4] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[5] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[6] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[7] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[8] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[9] | DENG Jian, WANG Kai, LUO Guangsheng. Development and consideration of adiabatic continuous microreaction technology for safe production of nitro compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3923-3925. |
[10] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[11] | LYU Chengyuan, ZHANG Han, YANG Mingwang, DU Jianjun, FAN Jiangli. Recent advances of dioxetane-based afterglow system for bio-imaging [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4108-4122. |
[12] | LI Dong, WANG Qianqian, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of series stack of non-aqueous nano slurry thermally regenerative flow batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4238-4246. |
[13] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
[14] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[15] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |