Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (S2): 336-345.DOI: 10.16085/j.issn.1000-6613.2020-1514
• Resources and environmental engineering • Previous Articles Next Articles
Xingyue LENG, Caihong HU, Weiyue WANG, Dandan LI, Jian CHEN(), Mengfei LUO
Received:
2020-08-03
Online:
2020-11-17
Published:
2020-11-20
Contact:
Jian CHEN
通讯作者:
陈建
作者简介:
冷星月(1997—),女,硕士研究生,研究方向为环境催化。
基金资助:
CLC Number:
Xingyue LENG, Caihong HU, Weiyue WANG, Dandan LI, Jian CHEN, Mengfei LUO. Recent advance in low concentration volatile organic compounds adsorption and concentration materials[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 336-345.
冷星月, 胡彩虹, 王炜月, 李丹丹, 陈建, 罗孟飞. 低浓度挥发性有机物吸附浓缩材料的研究进展[J]. 化工进展, 2020, 39(S2): 336-345.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1514
吸附剂 | 结构性质 | 饱和吸附量/mg·g-1 | |||||
---|---|---|---|---|---|---|---|
BET/m2·g-1 | 微孔面积/m2·g-1 | 总孔容/m3·g-1 | 平均孔径/nm | 正己烷 | 甲苯 | 乙酸乙酯 | |
5A | 449.2 | 303.6 | 0.248 | 0.552 | 99.41 | 9.56 | 18.9 |
13X | 635.3 | 574.2 | 0.310 | 0.793~1.093 | 128.70 | 196.52 | 221.07 |
NaY | 582.9 | 506.0 | 0.318 | 0.755~1.093 | 110.53 | 153.28 | 172.69 |
ZSM-5(27) | 287.6 | 226.4 | 0.202 | 0.612~1.686 | 77.01 | 48.63 | 146.60 |
ZSM-5(300) | 345.7 | 284.3 | 0.226 | 0.522~0.913 | 94.59 | 58.83 | 166.80 |
Hβ | 377.7 | 151.9 | 0.347 | 0.642~1.198 | 71.64 | 97.14 | 123.01 |
MCM-41 | 1053.8 | — | 0.952 | 4.093 | 12.95 | 58.30 | 151.5 |
AC | 1720.8 | 1191.4 | 1.23 | 0.501~5.688 | 200.07 | 305.66 | 229.48 |
吸附剂 | 结构性质 | 饱和吸附量/mg·g-1 | |||||
---|---|---|---|---|---|---|---|
BET/m2·g-1 | 微孔面积/m2·g-1 | 总孔容/m3·g-1 | 平均孔径/nm | 正己烷 | 甲苯 | 乙酸乙酯 | |
5A | 449.2 | 303.6 | 0.248 | 0.552 | 99.41 | 9.56 | 18.9 |
13X | 635.3 | 574.2 | 0.310 | 0.793~1.093 | 128.70 | 196.52 | 221.07 |
NaY | 582.9 | 506.0 | 0.318 | 0.755~1.093 | 110.53 | 153.28 | 172.69 |
ZSM-5(27) | 287.6 | 226.4 | 0.202 | 0.612~1.686 | 77.01 | 48.63 | 146.60 |
ZSM-5(300) | 345.7 | 284.3 | 0.226 | 0.522~0.913 | 94.59 | 58.83 | 166.80 |
Hβ | 377.7 | 151.9 | 0.347 | 0.642~1.198 | 71.64 | 97.14 | 123.01 |
MCM-41 | 1053.8 | — | 0.952 | 4.093 | 12.95 | 58.30 | 151.5 |
AC | 1720.8 | 1191.4 | 1.23 | 0.501~5.688 | 200.07 | 305.66 | 229.48 |
MOFs | Langmuir比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 平均孔径 /nm |
---|---|---|---|
MOF-5[ | 3917 | 1.55 | 0.86 |
ZIF-8[ | 1947 | 11.6 | 0.66 |
IRMOF-74-I to XI[ | 1350~2510 | — | 1.4~9.8 |
MIL-101[ | 5900 | 1.70 | 2.9~3.4 |
MOF-177[ | 4170 | 1.11 | 0.94 |
MOFs | Langmuir比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 平均孔径 /nm |
---|---|---|---|
MOF-5[ | 3917 | 1.55 | 0.86 |
ZIF-8[ | 1947 | 11.6 | 0.66 |
IRMOF-74-I to XI[ | 1350~2510 | — | 1.4~9.8 |
MIL-101[ | 5900 | 1.70 | 2.9~3.4 |
MOF-177[ | 4170 | 1.11 | 0.94 |
硅胶样品 | 结构性质 | 吸附量/mg·g-1 | |||
---|---|---|---|---|---|
BET/m2·g-1 | 平均孔径/nm | 总孔容/cm3·g-1 | 丙酮 | 乙酸乙酯 | |
1# 硅胶 | 766 | 2.2 | 0.44 | 118.9 | 254.1 |
2# 硅胶 | 513 | 4.9 | 0.77 | 86.0 | 219.3 |
3# 硅胶 | 380 | 7.0 | 0.85 | 57.9 | 142.4 |
硅胶样品 | 结构性质 | 吸附量/mg·g-1 | |||
---|---|---|---|---|---|
BET/m2·g-1 | 平均孔径/nm | 总孔容/cm3·g-1 | 丙酮 | 乙酸乙酯 | |
1# 硅胶 | 766 | 2.2 | 0.44 | 118.9 | 254.1 |
2# 硅胶 | 513 | 4.9 | 0.77 | 86.0 | 219.3 |
3# 硅胶 | 380 | 7.0 | 0.85 | 57.9 | 142.4 |
15 | FÉREY G, MELLOT-DRANIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042. |
16 | MORRIS W, DOONAN C J, YAGHI O M. Postsynthetic modification of a metal-organic framework for stabilization of a hemiaminal and ammonia uptake[J]. Inorganic Chemistry, 2011, 50(15): 6853-6855. |
17 | CHAE H K, SIBERIO-PÉREZ D Y, KIM J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974): 523-527. |
18 | YANG K, XUE F, SUN Q, et al. Adsorption of volatile organic compounds by metal-organic frameworks MOF-177[J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 713-718. |
19 | YANG K, SUN Q, XUE F, et al. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: influence of molecular size and shape[J]. Journal of Hazardous Materials, 2011, 195: 124-131. |
20 | 商连弟, 王宗兰, 揣效忠, 等. 八种晶型氧化铝的研制与鉴别[J]. 化学世界, 1994(7): 346-350. |
SHANG Liandi, WANG Zonglan, CHUAI Xiaozhong, et al. Development and identification of eight crystal forms of alumina[J]. Chemical Word, 1994(7): 346-350. | |
21 | 刘纪江, 隋红, 王泽利, 等. 极性VOCs组分在硅胶上的吸脱附性质研究[J]. 现代化工, 2018, 38(12): 181-185. |
LIU Jijiang, Hong SUI, WANG Zeli, et al. Adsorption and desorption properties of polar VOCs on silica gel[J]. Moden Chemical Industry, 2018, 38(12): 181-185. | |
22 | 王稚真, 卢晗锋, 张波, 等. 水蒸气对改性椰壳活性炭吸附VOCs的影响[J]. 环境工程学报, 2010, 4(11): 2566-2570. |
1 | SING K. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure & Applied Chemistry, 1982, 57(4): 603-619. |
2 | 白洪亮. 活性炭吸附法脱除低浓度苯系物的研究[D]. 大连: 大连理工大学, 2006. |
22 | WANG Zhizhen, LU Hanfeng, ZHANG Bo, et al. Effect of water vapor on adsorption of VOCs by modified cocoanut activated carbon[J]. Chinese Journal of Environmental, 2010, 4(11): 2566-2570. |
23 | 高华生, 汪大翚, 叶芸春, 等. 空气湿度对低浓度有机蒸气在活性炭上吸附平衡的影响[J]. 环境科学学报, 2002(2): 194-198. |
GAO Huasheng, WANG Dahui, YE Yunchun, et al. The influence of atmospheric humidity on the adsorption capacity of activated carbon for low-concentration VOCs[J]. Acta Science Circumstantiae, 2002(2): 194-198. | |
24 | 刘玉洁, 闫伦靖, 白永辉, 等. Y型分子筛介孔改性的研究进展[J]. 化工进展, 2018, 37(2): 569-575. |
LIU Yujie, YAN Lunjing, BAI Yonghui, et al. Research progress of mesopore-modification of Y zeolites[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 569-575. | |
25 | 黄海凤, 戎文娟, 顾勇义, 等. ZSM-5沸石分子筛吸附-脱附VOCs的性能研究[J]. 环境科学学报, 2014, 34(12): 3144-3151. |
HUANG Haifeng, RONG Wenjuan, GU Yongyi, et al. Adsorption and desorption of VOCs on the ZSM-5 zeolite[J]. Acta Scientiae Circumstantiae, 2014, 34(12): 3144-3151. | |
26 | AL-JANABI N, HILL P, TORRENTE-MURCIANO L. Mapping the Cu-BTC metal-organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases[J]. Chemical Engineering Journal, 2015, 281: 669-677. |
27 | XIAN S, YU Y, XIAN J, et al. Competitive adsorption of water vapor with VOCs dichloroethane,ethylace -tate and benzene on MIL-101(Cr) in humid atmosphere[J]. RSC Advances, 2014, 2015(3): 1827-1834. |
28 | 周春何, 卢晗锋, 曾立, 等. 沸石分子筛和活性炭吸附/脱附甲苯性能对比[J]. 环境污染与防治, 2009, 31(4): 38-41, 44. |
ZHOU Chunhe, LU Hanfeng, ZENG Li, et al. Relative performance of zeolites and activated carbon in gaseous phase adsorption and desorption of toluene[J]. Environmental Pollution & Control, 2009, 31(4): 38-41, 44. | |
29 | 张智, 马修卫, 李津津, 等. 中高温环境下VOCs在活性炭上的吸附性能研究[J]. 化工学报, 2019, 70(12): 4811-4820. |
ZHANG Zhi, MA Xiuwei, LI Jingjing, et al. Study on adsorption capacity of VOCs on activated carbon at medium-high temperature[J]. CIESC Journal, 2019, 70(12): 4811-4820. | |
30 | 梁欣欣, 卜龙利, 刘嘉栋, 等. 分子筛负载型吸附剂对典型VOCs的吸附行为特性[J]. 环境工程学报, 2016, 10(6): 3152-3160. |
LIANG Xinxin, BU Longli, LIU Jiadong, et al. Adsorption characteristics of typical VOCs on Cu-Mn-Ce/ZSM adsorbent fixed-bed[J]. Chinese Journal of Environmental Engieering, 2016, 10(6): 3152-3160. | |
31 | 罗宏慧, 朱质彬, 申永浩. 活性炭共吸附现象对有机蒸气穿透容量的影响[J]. 哈尔滨工业大学学报, 1997(5): 104-107. |
LUO Honghui, ZHU Zhibin, SHENG Yonghao, et al. The effect of activated carbon co-adsorption on organic vapor breakthrough capacity[J]. Journal of Harbin Institute of Technology, 1997(5): 104-107. | |
32 | VAHDAT N. Theoretical study of the performance of activated carbon in the presence of binary vapor mixtures[J]. Carbon, 1997, 35(10): 1544-1557. |
33 | 王海林, 张国宁, 聂磊, 等. 我国工业VOCs减排控制与管理对策研究[J]. 环境科学, 2011, 32(12): 3462-3468. |
WANG Hailin, ZHANG Guoning, NIE Lei, et al. Study on control and management for industrial volatile organic compounds ( VOCs) in china[J]. Environmental Science, 2011, 32 (12): 3462-3468. | |
34 | 席劲瑛, 武俊良, 胡洪营, 等. 工业VOCs气体处理技术应用状况调查分析[J]. 中国环境科学, 2012, 32(11): 1955-1960. |
XI Jingyin, WU Junliang, HU Hongying, et al. Application status of industrial VOCs gas treatment techniques[J]. China Environmental Science, 2012, 32(11): 1955-1960. | |
35 | 许伟, 刘军利, 孙康. 活性炭吸附法在挥发性有机物治理中的应用研究进展[J]. 化工进展, 2016, 35(4): 1223-1229. |
XU Wei, LIU Junli, SUN Kang, et al. Application progresses in the treatment of volatile organic compounds by adsorption on activated carbon[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 1223-1229. | |
36 | 李蕾, 王学华, 王浩, 等. 吸附浓缩-催化燃烧工艺处理低浓度大风量有机废气[J]. 环境工程学报, 2015, 9(11): 5555-5561. |
LI Lei, WANG Xuehua, WANG Hao, et al. Adsorption and catalytic combustion for volatile organic compoundswith large flow and low concentration[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5555-5561. | |
37 | 巩远辉, 王燕, 蔡旺锋, 等. 吸附浓缩-蓄热催化燃烧工艺过程研究[J]. 现代化工, 2019, 39(5): 202-206. |
GONG Yuanhui, WANG Yan, CAI Wangfeng, et al. Study on adsorption concentration-regenerative catalytic combustion process[J]. Modern Chemical Industry, 2019, 39(5): 202-206. | |
38 | TOSHIO Y, KAZUYA A, MAKOTO S, et al. Development of new hybrid VOCs treatment process using activated carbon and electrically heated alumite catalyst[J]. Journal of Chemical Engineering of Japan, 2013, 46(12): 802-810. |
39 | 董霓, 林艳军, 崔玉东. 治理VOCs的新工艺-沸石转轮吸附浓缩+催化燃烧[J]. 环境与发展, 2017, 29(7): 118-119. |
DONG Ni, LIN Yanjun, CUI Yudong, et al. A new process for controlling VOCs-Zeolite runner adsorption concentration + catalytic combustion[J]. Environment and Development, 2017, 29(7): 118-119. | |
40 | 王家德, 郑亮巍, 朱润晔, 等. 改性13X沸石蜂窝转轮对甲苯的吸附性能研究[J]. 环境科学, 2013, 34(12): 4684-4688. |
WANG Jiade, DENG Liangwei, ZHU Runye, et al. Removal of toluene from waste gas by honeycomb adsorption rotor with modified 13X molecular sieves[J]. Environmental Science, 2013, 34 (12): 4684-4688. | |
41 | 王毅. 沸石转轮+RTO工艺在低浓度VOCs废气治理中的应用[J]. 浙江化工, 2020, 51(2): 36-40. |
WANG Yi. Application of zeolite runner + RTO process in low-concentration VOCs waste gas treatment[J]. Zhejiang Chemical Industry, 2020, 51(2): 36-40. | |
2 | BAI Hongliang. Removal of low concentration BTEX with adsorption method by using activated carbon[D]. Dalian: Dalian University of Technology, 2006. |
3 | 罗小会. 负载分子筛蜂窝状陶瓷对VOCs吸脱附性能研究[D]. 杭州: 浙江师范大学, 2019. |
LUO Xiaohui. Adsorption and desorption properties of VOCs on molecular sieve-supported honeycome[D]. Hangzhou: Zhejiang Normal University, 2019. | |
4 | 罗小会, 张文霞, 宋宇鹏, 等. 负载分子筛的蜂窝状陶瓷对VOCs的吸脱附性能[J]. 环境工程, 2019, 37(S1): 169-174. |
LUO Xiaohui, ZHANG Wenxia, SONG Yupeng, et al. Adsorption and desorption properties of VOCs on honeycome ceramics loaded with molecular sieve[J]. Envoronmental Engineering, 2019, 37(S1): 169-174. | |
5 | 钱薇, 张浩哲, 陈超宇, 等. 活性炭和分子筛吸附VOCs的研究进展[J]. 化工生产与技术, 2019, 25(3): 19-23. |
QIAN Wei, ZHANG Haozhe, CHEN Chaoyu,et al. Research progress on the adsorption of VOCs by activated carbon and molecular sieves[J]. Chemical Production and Technology, 2019, 25(3): 19-23. | |
6 | 张本镔, 刘运权, 叶跃元. 活性炭制备及其活化机理研究进展[J]. 现代化工, 2014, 34(3): 34-39. |
ZHANG Benbing, LIU Yunquan, YE Yueyuan. Progress in preparation of activated carbon and its activation mechanism[J]. Moden Chemical Industy, 2014, 34(3): 34-39. | |
7 | LILLO-RÓDENAS M, CAZORLA-AMORÓS D, LINARES-SOLANO A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations[J]. Carbon, 2005, 43(8): 1758-1767. |
8 | 岳旭, 王胜, 刘旭, 等. 不同吸附剂上动态吸附-脱附挥发性有机气体性能研究[J]. 燃料化学学报, 2020, 48(1): 120-128. |
YU Xu, WANG Sheng, LIU Xu, et al. Dynamic adsorption and desorption of volatile organic compounds on different adsorbents[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 120-128. | |
9 | BARRER R M. Zeolites and their synthesis[J]. Zeolites, 1981, 1(3): 130-140. |
10 | 周燕芳. 分子筛VOCs吸附性能及其工业化应用研究[D]. 杭州: 浙江大学, 2019. |
ZHOU Yanfang. Adsorption performance and industrial application of zeolites for VOCs[D]. Hangzhou: Zhejiang University, 2019. | |
11 | 吕双春, 葛云丽, 赵倩, 等. 高硅分子筛的合成及其在VOCs吸附去除领域的应用[J]. 环境化学, 2017, 36(7): 1492-1505. |
Shuangchun LYU, GE Yunli, ZHAO Qian, et al. Synthesis of high silica molecular sieves and their application in VOCs adsorption removal[J]. Environmental chemistry, 2017, 36(7): 1492-1505. | |
12 | LI H, EDDAOUDI M, YAGHIO M, et al. Design and synthesis of an exceptionally stable and highly porous metalorganic framework[J]. Nature, 1999, 402(6759): 276-279. |
13 | PARK K S, NI Z, CÔTÉ A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proc. Natl. Acad. Sci. USA, 2006, 103(27): 10186-10191. |
14 | DENG H, GRUNDER S, CORDOVA K E, et al. Large-pore apertures in a series of metal-organic frame works[J]. Science, 2012, 336(6084): 1018-1023. |
[1] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[2] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[3] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
[4] | WANG Darui, SUN Hongmin, XUE Mingwei, WANG Yiyan, LIU Wei, YANG Weimin. Efficient synthesis of fully crystalline ZSM-5 zeolite catalyst by microwave method and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3582-3588. |
[5] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[6] | REN Zhongyuan, HE Jinlong, YUAN Qing. Research progress on intercrystalline defects control and remediation technologies for zeolite membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2454-2463. |
[7] | NING Shuying, SU Yaxin, YANG Honghai, WEN Nini. Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NO x with hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1308-1320. |
[8] | HUO Wentao, LIU Wen, YU Qiang, AN Jie, ZHU Xiangxue, QIN Yucai, LI Xiujie. Oligomerization of isobutene over MWW zeolite based catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5205-5212. |
[9] | LIU Shulin, YANG Na, ZHANG Longfei, SUN Yongli, JIANG Bin, XIAO Xiaoming, TANTAI Xiaowei, ZHANG Lyuhong. Al-doped Cu/SBA-15 catalysts for the hydrogenation of dimethyl adipate to 1,6-hexanediol [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 289-296. |
[10] | LIU Peihui, LIU Yuzhe, LI Lin, WANG Shaohui, WANG Tonghua. Activation strategies of the porous carbon with high specific surface area and hierarchical pore structure and its VOCs adsorption performance [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 613-621. |
[11] | JU Yanan, CHENG Xiangwei, YANG Xiazhen, HUO Chao, LIU Huazhang. Effects of Mg and polyethylene glycol modification of ZSM-5 catalyst on cracking bagasse [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 221-228. |
[12] | WU Chuanpeng, LI Chuankun, YANG Zhe, GOU Chengdong, GAO Xinjiang. Research progress of SO2 removal by solid adsorbents [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3840-3854. |
[13] | ZHENG Yamei, LIN Shengnan, JING Guohua, SHEN Huazhen, LYU Bihong. Evaluation of VOCs terminal treatment technology in pesticide production based on fuzzy analytic hierarchy process [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3372-3380. |
[14] | LIU Xingyuan, ZHANG Yongfeng, XIAO Kai, GAO Jingze. Research progress of molecular sieve materials in the adsorption of VOCs [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2504-2510. |
[15] | LIN Dong, FENG Xiang, LIU Yibin, CHEN Xiaobo, YANG Chaohe. Research progress on the controllable synthesis of high-performance titanium silicalite and its catalytic propene epoxidation with gaseous hydrogen and oxygen [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2389-2403. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |