1 |
CAO F, SONG Y L, LI M J. Review on development of air source transcritical CO2 heat pump systems using direct-heated type and recirculating-heated type[J]. International Journal of Refrigeration, 2019, 104: 455-475.
|
2 |
LIU S C, LI Z, DAI B M, et al. Energetic, economic and environmental analysis of air source transcritical CO2 heat pump system for residential heating in China[J]. Applied Thermal Engineering, 2019, 148: 1425-1439.
|
3 |
马一太,王派,李敏霞,等. 温室效应及第四代制冷工质[J]. 制冷技术, 2017, 37(5): 8-13.
|
|
MA Yitai, WANG Pai, LI Minxia, et al. Greenhouse effect and the fourth generation of refrigerant[J]. The Chinese Journal of Refrigeration Technology, 2017, 37(5): 8-13.
|
4 |
LORENTZEN G. Throttling, the internal haemorrhage of the refrigeration process[J]. Proceedings-Institute of Refrigeration, 1983, 80: 39-47.
|
5 |
CAO F, CUI C, WEI X Y, et al. The experimental investigation on a novel transcritical CO2 heat pump combined system for space heating[J]. International Journal of Refrigeration, 2019, 106: 539-548.
|
6 |
HWANG Y H, CELIK A, RADERMACHER R. Performance of CO2 cycles with a two-stage compressor[C]//International Refrigeration and Air Conditioning Conference, Purdue, 2004.
|
7 |
KIM H J, AHN J M, CHO S O, et al. Numerical simulation on scroll expander-compressor unit for CO2 trans-critical cycles[J]. Applied Thermal Engineering, 2008, 28(13): 1654-1661.
|
8 |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 低环境温度空气源热泵(冷水)机组-第1部分 工业或商业用及类似用途的热泵(冷水)机组: [S]. 北京: 中国标准出版社, 2010.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Low ambient temperature air source heat pump (cold water) unit-part 1: industrial or commercial and similar use heat pump (cold water) unit: [S]. Beijing: Standards Press of China, 2010.
|
9 |
CAO F, YE Z L, WANG Y K. Experimental investigation on the influence of internal heat exchanger in a transcritical CO2 heat pump water heater[J]. Applied Thermal Engineering, 2020, 168: 114855.
|
10 |
DAI B M, QI H F, LIU S C, et al. Environmental and economical analyses of transcritical CO2 heat pump combined with direct dedicated mechanical subcooling (DMS) for space heating in China[J]. Energy Conversion and Management, 2019, 198: 111317.
|
11 |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 民用建筑供暖通风与空气调节设计规范: [S]. 北京: 中国标准出版社, 2016.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Design code for heating, ventilation and air conditioning of civil buildings: [S]. Beijing: Standards Press of China, 2016.
|
12 |
BEJAN A, TSATSARONIS G, MORAN M J. Thermal design and optimization[M]. New York: John Wiley & Sons, 1995: 334-369.
|
13 |
COUPER J R, PENNEY W R, FAIR J R. Chemical process equipment-selection and design (Revised 2nd Edition)[M]. New York: Gulf Professional Publishing, 2009: 717-726.
|
14 |
CHENG L, RIBATSKI G, MORENO Q J, et al. New prediction methods for CO2 evaporation inside tubes: part I- a two-phase flow pattern map and a flow pattern based phenomenological model for two-phase flow frictional pressure drops[J]. International Journal of Heat and Mass Transfer, 2008, 51(1/2): 111-124.
|
15 |
CHENG L, RIBATSKI G, THOME J R. New prediction methods for CO2 evaporation inside tubes: part Ⅱ-an updated general flow boiling heat transfer model based on flow patterns[J]. International Journal of Heat and Mass Transfer, 2008, 51(1-2): 125-135.
|
16 |
KANG H J, LI W, LI H Z, et al. Experimental study on heat transfer and pressure drop characteristics of four types of plate fin-and-tube heat exchanger surfaces[J]. Journal of Thermal Science, 1994, 3(1): 34-42.
|
17 |
DANG C B, HIHARA E. In-tube cooling heat transfer of supercritical carbon dioxide. part 1. Experimental measurement[J]. International Journal of Refrigeration, 2004, 27(7): 736-747.
|
18 |
杨世铭,陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 243-256.
|
|
YANG Shimin, TAO Wenquan. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006: 243-256.
|
19 |
DIXIT M, ARORA A, KAUSHIK S C. Thermodynamic and thermoeconomic analyses of two stage hybrid absorption compression refrigeration system[J]. Applied Thermal Engineering, 2017, 113: 120-131.
|
20 |
WU Z, ZHANG Y, SHENG Y. Energy, exergy, economic(3E) analysis and multi-objective optimization of a novel dual functional integration system[J]. Energy Conversion and Management, 2019, 199: 111962.
|
21 |
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.城市供热规划规范:[S].北京: 中国标准出版社, 2015.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. City heating planning code: [S]. Beijing: Standards Press of China, 2015.
|
22 |
WANG G B, ZHANG X R. Thermoeconomic analysis of optimization potential for CO2 vapor compression cycle: from transcritical to supercritical operation for waste heat recovery from the steam condenser[J]. International Journal of Energy Research, 2018, 43(1): 297-312.
|
23 |
SADEGHI M, CHITSAZ A, MAHMOUDI S M S, et al. Thermoeconomic optimization using an evolutionary algorithm of a trigeneration system driven by a solid oxide fuel cell[J]. Energy, 2015, 89: 191-204.
|
24 |
MIGNARD D. Correlating the chemical engineering plant cost index with macro-economic indicators[J]. Chemical Engineering Research and Design, 2014, 92(2): 285-294.
|
25 |
KAUF F. Determination of the optimum high pressure for transcritical CO2-refrigeration cycles[J]. International Journal of Thermal Sciences, 1999, 38(4): 325-330.
|
26 |
LLOPIS R, CABELLO R, SANCHEZ D, et al. Energy improvements of CO2 transcritical refrigeration cycles using dedicated mechanical subcooling[J]. International Journal of Refrigeration, 2015, 55: 129-141.
|