Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (5): 2560-2573.DOI: 10.16085/j.issn.1000-6613.2020-0884
• Industrial catalysis • Previous Articles Next Articles
FENG Haitao(), LIU Xiaoju, ZHANG Chi, WANG Yanli(), MA Xiaoyan()
Received:
2020-05-22
Online:
2021-05-24
Published:
2021-05-06
Contact:
WANG Yanli,MA Xiaoyan
通讯作者:
王艳丽,马晓燕
作者简介:
冯海涛(1996—),男,硕士研究生,研究方向为新型燃烧催化剂的制备。E-mail:CLC Number:
FENG Haitao, LIU Xiaoju, ZHANG Chi, WANG Yanli, MA Xiaoyan. Research progress of new ferrocene-based burning rate catalysts for composite solid propellants[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2560-2573.
冯海涛, 刘晓菊, 张弛, 王艳丽, 马晓燕. 复合固体推进剂用新型二茂铁类燃速催化剂研究进展[J]. 化工进展, 2021, 40(5): 2560-2573.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0884
1 | ZHOU W D, WANG L, YU H J, et al. Progress on the synthesis and catalytic and anti-migration properties of ferrocene-based burning rate catalysts[J]. Applied Organometallic Chemistry, 2016, 30(9): 796-805. |
2 | USMAN M, WANG L, YU H J, et al. Recent progress on ferrocene-based burning rate catalysts for propellant applications[J]. Journal of Organometallic Chemistry, 2018, 872:40-53. |
3 | TONG R B, ZHAO Y L, WANG L, et al. Recent research progress in the synthesis and properties of burning rate catalysts based on ferrocene-containing polymers and derivatives[J]. Journal of Organometallic Chemistry, 2014, 755:16-32. |
4 | UL-ABDIN Z, YU H J, WANG L, et al. Synthesis, anti-migration and burning rate catalytic mechanism of ferrocene-based compounds[J]. Applied Organometallic Chemistry, 2014, 28(8): 567-575. |
5 | JIANG L P, LIU M M, XU L, et al. Synthesis and characterization of a dinuclear nitrogen-rich ferrocenyl ligand and its ionic coordination compounds and their catalytic effects during combustion[J]. Zeitschrift Für Anorganische und Allgemeine Chemie, 2019, 645(2): 92-100. |
6 | LIU X L, LI J Z, BI F Q, et al. Ionic ferrocene-based burning-rate catalysts with polycyano anions: synthesis, structural characterization, migration, and catalytic effects during combustion[J]. European Journal of Inorganic Chemistry, 2015(9): 1496-1504. |
7 | CHENG W Q, SHI X L, ZHANG Y, et al. Novel ferrocene-based 1,2,3-triazolyl compounds: synthesis, anti-migration properties and catalytic effects on oxidizers during combustion[J]. Inorganica Chimica Acta, 2020, 502:119374. |
8 | ZHANG Q, SHU Y J, LIU N, et al. Hydroxyl terminated polybutadiene: chemical modification and application of these modifiers in propellants and explosives[J]. Central European Journal of Energetic Materials, 2019, 16(2): 153-193. |
9 | YANG Y J, BAI Y, ZHAO F Q, et al. Effects of metal organic framework Fe-BTC on the thermal decomposition of ammonium perchlorate[J]. RSC Advances, 2016, 6(71): 67308-67314. |
10 | USMAN M, WANG L, YU H J, et al. Synthesis, anti-migration properties and burning rate catalytic properties of ferrocene-based compounds[J]. Inorganica Chimica Acta, 2019, 495:118958. |
11 | UL-ABDIN Z, WANG L, YU H J, et al. Synthesis and catalytic performance of ferrocene-based compounds as burning rate catalysts[J]. Applied Organometallic Chemistry, 2017, 31(11): e3754. |
12 | UL-ABDIN Z, WANG L, YU H J, et al. Synthesis of ferrocene-based saccharides and their anti-migration and burning rate catalytic properties[J]. RSC Advances, 2016, 6(100): 97469-97481. |
13 | ZHOU W D, WANG L, YU H J, et al. Synthesis of a novel ferrocene-based epoxy compound and its burning rate catalytic property[J]. RSC Advances, 2016, 6(59): 53679-53687. |
14 | LIU M M, SHAO E S, ZHAO K, et al. Dinuclear (ferrocenylmethyl)imidazolium Ionic compounds with polycyano anions. characterization, migration, and effects during combustion[J]. Zeitschrift Für Anorganische und Allgemeine Chemie, 2017, 643(13): 802-810. |
15 | SHAO E S, LI D D, LI J Z, et al. Mono- and dinuclear ferrocenyl ionic compounds with polycyano anions. characterization, migration, and catalytic effects on thermal decomposition of energetic compounds[J]. Zeitschrift Für Anorganische und Allgemeine Chemie, 2016, 642(16): 871-881. |
16 | LI T, LI D D, LI J Z, et al. “One-step” synthesis of ionic ferrocenyl compounds of ferrocenylmethyldimethylamine. Characterization, migration, and catalytic properties during combustion[J]. Zeitschrift Für Anorganische und Allgemeine Chemie, 2016, 642(19): 1095-1103. |
17 | WANG C Y, LI J Z, FAN X Z, et al. 5-Ferrocenyl-1H-tetrazole-derived transition-metal complexes: synthesis, crystal structures and catalytic effects on the thermal decomposition of the main components of solid propellants[J]. European Journal of Inorganic Chemistry, 2015,(6): 1012-1021. |
18 | LIU X L, ZHANG W Q, ZHANG G F, et al. Low-migratory ionic ferrocene-based burning rate catalysts with high combustion catalytic efficiency[J]. New Journal of Chemistry, 2015, 39(1): 155-162. |
19 | GAO X N, LI J Z, LUO Y, et al. Ionic ferrocenyl compounds containing polycyano anions. synthesis, structures, and effects on thermal decomposition of core components of solid propellants[J]. Zeitschrift Für Anorganische und Allgemeine Chemie, 2015, 641(2): 475-482. |
20 | GU X S, XIE S B, CHEN Q, et al. Anti-migration and burning rate catalytic performances of novel ferrocene-based porphyrins and their transition-metal complexes[J]. New Journal of Chemistry, 2018, 42(16): 13319-13328. |
21 | LI J Z, JIANG L P, JIA D, et al. Ferrocenyl ionic compounds containing[Fe(CN)6]3– anions: synthesis, characterization, and catalytic effects during combustion[J]. Zeitschrift Für Anorganische und Allgemeine Chemie, 2019, 645(1): 14-21. |
22 | LI J Z, GAO X N, SHAO E S, et al. Synthesis, characterization and migration of ionic polyferrocenyl compounds of 5-ferrocenyl-1H-tetrazole and their effects during combustion[J]. Zeitschrift Für Anorganische und Allgemeine Chemie, 2017, 643(6): 455-463. |
23 | LIU X L, ZHAO D M, BI F Q, et al. Synthesis, characterization, migration studies and combustion catalytic performances of energetic ionic binuclear ferrocene compounds[J]. Journal of Organometallic Chemistry, 2014, 762:1-8. |
24 | ZHAO H Y, ZHU X Y, SHANG Y D, et al. Ferrocene and[3]ferrocenophane-based β-diketonato copper() and zinc() complexes: synthesis, crystal structure, electrochemistry and catalytic effect on thermal decomposition of ammonium perchlorate[J]. RSC Advances, 2016, 6(41): 34476-34483. |
25 | ZHU X Y, LI X H, HAN F J, et al. Burning-rate catalytic properties of ferrocenyl β-diketones and their Cu(Ⅱ), Ni(Ⅱ) complexes[J]. Chinese Journal of Organic Chemistry, 2015, 35(4): 922. |
26 | ZHAO H Y, GUO L, CHEN S F, et al. Synthesis, complexation of 1,2,3-(NH)-triazolylferrocene derivatives and their catalytic effect on thermal decomposition of ammonium perchlorate[J]. RSC Advances, 2013, 3(43): 19929-19932. |
27 | ZHUO J B, MA Z H, LIN C X, et al. Synthesis of two nickel (Ⅱ) complexes bearing pyrrolide-imine ligand and their catalytic effects on thermal decomposition of ammonium perchlorate[J]. Journal of Molecular Structure, 2015, 1085:13-20. |
28 | ZHUO J B, LI H D, LIN C X, et al. Ferrocene-based sulfonyl dihydropyrazole derivatives: synthesis, structure, electrochemistry and effect on thermal decomposition of NH4ClO4[J]. Journal of Molecular Structure, 2014, 1067:112-119. |
29 | GAO Y, LI H D, KE C F, et al. Synthesis of dihydropyrazole-bridged dinuclear ferrocenyl derivatives and their catalytic effect on thermal decomposition of ammonium perchlorate[J]. Applied Organometallic Chemistry, 2011, 25(6): 407-411. |
30 | ARROYO J L, POVEA P, FAÚNDEZ R, et al. Influence iron-iron distance on the thermal decomposition of ammonium perchlorate. new catalysts for the highly efficient combustion of solid rocket propellant[J]. Journal of Organometallic Chemistry, 2020, 905: 121020. |
31 | POVEA P, ARROYO J L, CARREÑO G, et al. Catalytic effects of p-phenylene-bridged methylated binuclear ferrocenes on thermal decomposition of the main component of composite solid propellants[J]. Thermochimica Acta, 2018, 666:181-189. |
32 | MORALES-VERDEJO C, CAMARADA M B, ARROYO J L, et al. Effect of the homo- and heterobimetallic compounds derived from s-indacene on the thermal decomposition of ammonium perchlorate[J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(1): 353-361. |
33 | DHARA M, GIRI N, NARASIMHA RAO B, et al. Effect of segmental compatibility imposed over metal based polybutadiene polyurethane[J]. European Polymer Journal, 2020, 122:109380. |
34 | XIAO F J, YU X L, FENG F F, et al. Investigation of the redox property, migration and catalytic performance of ferrocene-modified hyperbranched poly(amine) ester[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23(2): 315-324. |
35 | GAO J M, WANG L, TAI Y L, et al. Study on poly(ferrocenylsilane) and its promotive effect to decomposition of ammonium perchlorate[J]. Journal of Propulsion and Power, 2011, 27(5): 1143-1145. |
36 | SHA Y, ZHANG Y D, ZHU T Y, et al. Ring-closing metathesis and ring-opening metathesis polymerization toward main-chain ferrocene-containing polymers[J]. Macromolecules, 2018, 51(22): 9131-9139. |
37 | SALEEM M, WANG L, YU H J, et al. Synthesis of ferrocene boronic acid-based block copolymers via RAFT polymerization and their micellization, redox responsive and glucose sensing properties[J]. Arabian Journal of Chemistry, 2019, 12(6): 800-815. |
38 | QIAN W H, ZHANG H Y, SONG T, et al. A new ferrocene/disulfide-containing methacrylate monomer: synthesis, ATRP and nanocomposite[J].European Polymer Journal, 2019, 119: 8-13. |
39 | 金亨到, 王立, 俞豪杰, 等. 主链或侧链含二茂铁的聚合物的合成和应用[J]. 化学进展, 2016, 28(1): 51-57. |
JIN H D, WANG L, YU H J, et al. Synthesis and application of main-or side-chain ferrocene-based polymers[J]. Progress in Chemistry, 2016, 28(1): 51-57. | |
40 | 孙凤霞, 彭夏雨, 康立超, 等. 超支化聚合物合成方法概述[J]. 热固性树脂, 2015, 30(3): 49-54. |
SUN F X, PENG X Y, KANG L C, et al. Overview of the synthesis of hyperbranched polymers[J]. Thermosetting Resin, 2015, 30(3): 49-54. | |
41 | GHOSH K, BEHERA S, KUMAR A, et al. Studies on aluminized, high burning rate, butacene® based, composite propellants[J]. Central European Journal of Energetic Materials, 2014, 11(3): 323-334. |
42 | CHO B S, NOH S T. Thermal properties of polyurethane binder with 2-(ferrocenylpropyl)dimethylsilane-grafted hydroxyl-terminated polybutadiene[J]. Journal of Applied Polymer Science, 2011, 121(6): 3560-3568. |
43 | TEIMURI-MOFRAD R, SAFA K D, ABEDINPOUR S, et al. Synthesis of 5-(dimethylsilyl)pentylalkyl-ferrocene-grafted HTPB (alkylFc-HTPB) via platinum-catalyzed hydrosilylation[J]. Journal of the Iranian Chemical Society, 2017, 14(10): 2177-2185. |
44 | SARAVANAKUMAR D, SENGOTTUVELAN N, NARAYANAN V, et al. Burning-rate enhancement of a high-energy rocket composite solid propellant based on ferrocene-grafted hydroxyl-terminated polybutadiene binder[J]. Journal of Applied Polymer Science, 2011, 119(5): 2517-2524. |
45 | RAO B N, MALKAPPA K, KUMAR N, et al. Ferrocene grafted hydroxyl terminated polybutadiene: a binder for propellant with improved burn rate[J]. Polymer, 2019, 163:162-170. |
46 | ZHOU W D, WANG L, YU H J, et al. Synthesis of ferrocene-modified poly(glycidyl methacrylate) and its burning rate catalytic property[J]. Applied Organometallic Chemistry, 2018, 32(1): e3932. |
47 | DENG Z, YU H J, WANG L, et al. Synthesis of ferrocenyl functionalized hyperbranched polyethylene and its application as low migration burning rate catalyst[J]. Journal of Organometallic Chemistry, 2015, 799/800: 273-280. |
48 | XIAO F J, FENG F F, LI L L, et al. Investigation on ultraviolet absorption properties, migration, and catalytic performances of ferrocene-modified hyper-branched polyesters[J]. Propellants, Explosives, Pyrotechnics, 2013, 38(3): 358-365. |
49 | XIAO F J, SUN X A, WU X F, et al. Synthesis and characterization of ferrocenyl-functionalized polyester dendrimers and catalytic performance for thermal decomposition of ammonium perchlorate[J]. Journal of Organometallic Chemistry, 2012, 713: 96-103. |
50 | XIAO F J, SHI M M, PENG L, et al. Ferrocene end-cap hyperbranched poly (amine-ester): structure and catalytic performance for thermal decomposition of ammonium perchlorate[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21(1): 175-181. |
51 | UL-ABDIN Z, WANG L, YU H J, et al. Ferrocene-based polyethyleneimines for burning rate catalysts[J]. New Journal of Chemistry, 2016, 40(4): 3155-3163. |
52 | UL-ABDIN Z, WANG L, YU H J, et al. Synthesis of ethylene diamine-based ferrocene terminated dendrimers and their application as burning rate catalysts[J]. Journal of Colloid and Interface Science, 2017, 487: 38-51. |
53 | UL-ABDIN Z, WANG L, YU H J, et al. Tris(2-aminoethyl)amine-based ferrocene-terminated dendrimers as burning rate catalysts for ammonium perchlorate-based propellant decomposition[J]. Applied Organometallic Chemistry,2018,32(4): e4268. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[5] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[6] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[7] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[8] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[9] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[10] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[11] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[12] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[13] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
[14] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[15] | WANG Zijian, KE Ming, SONG Zhaozheng, LI Jiahan, TONG Yanbing, SUN Jinru. Progress in alkylation of gasoline with molecular sieve catalyst for benzene reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2371-2389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |