Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (3): 1619-1633.DOI: 10.16085/j.issn.1000-6613.2020-0878
• Resources and environmental engineering • Previous Articles Next Articles
GUO Chaoran1,2(), HUANG Yong1,2,3(), ZHU Wenjuan1,2, CHEN Liyuan1,2, WANG Lingzhi1,2, ZHANG Yue1,2, XU Chutian1,2, LI Dapeng1,2,3
Received:
2020-05-21
Online:
2021-03-17
Published:
2021-03-05
Contact:
HUANG Yong
郭超然1,2(), 黄勇1,2,3(), 朱文娟1,2, 陈丽媛1,2, 王灵芝1,2, 张悦1,2, 徐楚天1,2, 李大鹏1,2,3
通讯作者:
黄勇
作者简介:
郭超然(1994—),男,硕士研究生,研究方向为污水处理与回用技术。E-mail:基金资助:
CLC Number:
GUO Chaoran, HUANG Yong, ZHU Wenjuan, CHEN Liyuan, WANG Lingzhi, ZHANG Yue, XU Chutian, LI Dapeng. Organics recovery from municipal wastewater: research advances in capture technologies[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1619-1633.
郭超然, 黄勇, 朱文娟, 陈丽媛, 王灵芝, 张悦, 徐楚天, 李大鹏. 城市污水有机物回收——捕获技术研究进展[J]. 化工进展, 2021, 40(3): 1619-1633.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0878
工艺类型 | 污泥龄 (SRT)/d | 污泥负荷率(F/M,SLR) /g BOD·(gVSS)-1·d-1 | 溶解氧(DO) /mg·L-1 | 水力停留时间(HRT)/h | 再生时间 | 文献来源 |
---|---|---|---|---|---|---|
/h | ||||||
传统活性污泥法(CAS) | 3~15 | 0.2~0.6 | 2 | 4~12 | — | [ |
高负荷活性污泥法(HRAS) | 0.2~2 | 2~10 | 0.5~1 | 0.5~1 | — | [ |
高负荷“吸附-再生”法(HRCS) | 0.2~1 | 2~10 | 0.5~1 | 0.17~1 | 0.25~0.66 | [ |
工艺类型 | 污泥龄 (SRT)/d | 污泥负荷率(F/M,SLR) /g BOD·(gVSS)-1·d-1 | 溶解氧(DO) /mg·L-1 | 水力停留时间(HRT)/h | 再生时间 | 文献来源 |
---|---|---|---|---|---|---|
/h | ||||||
传统活性污泥法(CAS) | 3~15 | 0.2~0.6 | 2 | 4~12 | — | [ |
高负荷活性污泥法(HRAS) | 0.2~2 | 2~10 | 0.5~1 | 0.5~1 | — | [ |
高负荷“吸附-再生”法(HRCS) | 0.2~1 | 2~10 | 0.5~1 | 0.17~1 | 0.25~0.66 | [ |
碳捕获工艺 | 所需介质 | 优点 | 缺点 |
---|---|---|---|
混凝/絮凝 | 无机絮凝剂:铁、铝盐,如Al2(SO4)3、FeCl3 | ①价格低廉,如FeCl3约为1200CNY·t-1[ ②碳捕获效果好,同时对磷去除率高 | ①投加量较高,一般为每升几十毫克Fe或Al ②污泥产量大 ③残余水中的铝元素过高会产生环境风险,导致在动物体内蓄积 |
有机高分子絮凝剂:如聚丙烯酰胺(PAM)、聚二甲基二烯丙基氯化铵(PDADMAC)、聚乙烯亚胺(PEI)等 | ①投加量低,一般为每升几毫克 ②架桥能力强,其形成的絮体大而结实、沉降速度快 | ①单独使用时,有机碳捕获效果一般逊于无机絮凝剂 ②其中残余聚合物单体会产生环境风险。如丙烯酰胺具有中枢神经毒性[ | |
天然高分子絮凝剂:淀粉、壳聚糖、纤维素、瓜尔胶、单宁等天然有机高分子改性后产物 | ①毒性小,且易在自然环境中降解 ②原料来源广泛,可从多种动植物中提取,属于可再生资源 | 天然原料价格仍较高,如淀粉约 5000CNY·t-1、壳聚糖约250000CNY·t-1 [ | |
微生物絮凝剂:一类微生物代谢产物,由糖蛋白、多糖、蛋白质等组成 | ①与污染物亲和性强,絮凝效果好 ②安全无毒,且易在自然环境中降解 | ①提取方法复杂繁琐、产品储存稳定 性差[ ②离规模化生产、应用还有较大差距 | |
载体絮凝:在传统絮凝过程中,引入高密度的不溶解颗粒以促进絮体的增长和沉淀过程的网捕作用,常见载体有细砂、磁种(磁铁矿、钛铁矿等)[ | ①效率高,节约絮凝剂用量 ②利用旋流器、磁鼓可将细砂、磁种这样的重介质回收再使用 | 对池体构型和设备技术要求高,现多为完整的专利技术,如Actiflo工艺和DensaDeg 工艺[ | |
气浮 | 大量、高度分散的微气泡 | ①无需外来补充介质 ②处理效率高、占地面积小、技术及工艺成熟 | ①对溶解性有机碳无捕获效果 ②对胶体和亲水性颗粒需要外加药剂强化捕获效率 ③含氧气泡释放中则会有有机碳损失 |
吸附 | 沸石、各种生物质制备的活性炭及其改性产物 | 对溶解性有机碳捕获能力强 | 吸附效率、沉降性能、能否回收及成本都面临实际考验 |
碳捕获工艺 | 所需介质 | 优点 | 缺点 |
---|---|---|---|
混凝/絮凝 | 无机絮凝剂:铁、铝盐,如Al2(SO4)3、FeCl3 | ①价格低廉,如FeCl3约为1200CNY·t-1[ ②碳捕获效果好,同时对磷去除率高 | ①投加量较高,一般为每升几十毫克Fe或Al ②污泥产量大 ③残余水中的铝元素过高会产生环境风险,导致在动物体内蓄积 |
有机高分子絮凝剂:如聚丙烯酰胺(PAM)、聚二甲基二烯丙基氯化铵(PDADMAC)、聚乙烯亚胺(PEI)等 | ①投加量低,一般为每升几毫克 ②架桥能力强,其形成的絮体大而结实、沉降速度快 | ①单独使用时,有机碳捕获效果一般逊于无机絮凝剂 ②其中残余聚合物单体会产生环境风险。如丙烯酰胺具有中枢神经毒性[ | |
天然高分子絮凝剂:淀粉、壳聚糖、纤维素、瓜尔胶、单宁等天然有机高分子改性后产物 | ①毒性小,且易在自然环境中降解 ②原料来源广泛,可从多种动植物中提取,属于可再生资源 | 天然原料价格仍较高,如淀粉约 5000CNY·t-1、壳聚糖约250000CNY·t-1 [ | |
微生物絮凝剂:一类微生物代谢产物,由糖蛋白、多糖、蛋白质等组成 | ①与污染物亲和性强,絮凝效果好 ②安全无毒,且易在自然环境中降解 | ①提取方法复杂繁琐、产品储存稳定 性差[ ②离规模化生产、应用还有较大差距 | |
载体絮凝:在传统絮凝过程中,引入高密度的不溶解颗粒以促进絮体的增长和沉淀过程的网捕作用,常见载体有细砂、磁种(磁铁矿、钛铁矿等)[ | ①效率高,节约絮凝剂用量 ②利用旋流器、磁鼓可将细砂、磁种这样的重介质回收再使用 | 对池体构型和设备技术要求高,现多为完整的专利技术,如Actiflo工艺和DensaDeg 工艺[ | |
气浮 | 大量、高度分散的微气泡 | ①无需外来补充介质 ②处理效率高、占地面积小、技术及工艺成熟 | ①对溶解性有机碳无捕获效果 ②对胶体和亲水性颗粒需要外加药剂强化捕获效率 ③含氧气泡释放中则会有有机碳损失 |
吸附 | 沸石、各种生物质制备的活性炭及其改性产物 | 对溶解性有机碳捕获能力强 | 吸附效率、沉降性能、能否回收及成本都面临实际考验 |
生活污水COD/mg·L-1 | 药剂 | 投加量/mg·L-1 | COD去除率/% | 研究者 | |
---|---|---|---|---|---|
751 | 硫酸铁(FS) | 80 | 85.9 | 王东海等[ | |
303 | 氯化铁(FC) | 25 | 77 | Chen等[ | |
76.3~240.4 | 硫酸铝(AS) | 70 | 79.5 | 黄天寅等[ | |
480±37 | 硫酸铝 | 约10 | 65 | Chakraborty等[ | |
130~200 | 碱式氯化铝(BAC) | 100 | 85 | 张敬东等[ | |
235~426 | 聚合氯化铝(PAC)+阳离子助凝剂 | 100+2 | 78 | 亓化亮等[ | |
522 | 氯化铁+阴离子助凝剂 | 50+10 | 73 | Aiyuk等[ | |
300 | 聚丙烯酰胺(PAM) | 0.1875 | 58.8 | 吴小宁[ | |
481.2 | 阳离子聚丙烯酰胺(CPAM) | 0.5 | 44.8 | 刘海龙等[ | |
540 | 羧甲基瓜尔胶接枝PAM产物 | 9 | 61 | Pal等[ | |
210 | 植物单宁阳离子改性絮凝剂 | 100 | 50 | Beltrán等[ |
生活污水COD/mg·L-1 | 药剂 | 投加量/mg·L-1 | COD去除率/% | 研究者 | |
---|---|---|---|---|---|
751 | 硫酸铁(FS) | 80 | 85.9 | 王东海等[ | |
303 | 氯化铁(FC) | 25 | 77 | Chen等[ | |
76.3~240.4 | 硫酸铝(AS) | 70 | 79.5 | 黄天寅等[ | |
480±37 | 硫酸铝 | 约10 | 65 | Chakraborty等[ | |
130~200 | 碱式氯化铝(BAC) | 100 | 85 | 张敬东等[ | |
235~426 | 聚合氯化铝(PAC)+阳离子助凝剂 | 100+2 | 78 | 亓化亮等[ | |
522 | 氯化铁+阴离子助凝剂 | 50+10 | 73 | Aiyuk等[ | |
300 | 聚丙烯酰胺(PAM) | 0.1875 | 58.8 | 吴小宁[ | |
481.2 | 阳离子聚丙烯酰胺(CPAM) | 0.5 | 44.8 | 刘海龙等[ | |
540 | 羧甲基瓜尔胶接枝PAM产物 | 9 | 61 | Pal等[ | |
210 | 植物单宁阳离子改性絮凝剂 | 100 | 50 | Beltrán等[ |
膜技术 | 膜组件、材料、孔径 | 进水性质 | 富集程度 | 膜通量 /L·m-2·h-1 | 跨膜压差 (TMP)/104Pa | 清洗方式 | 文献 |
---|---|---|---|---|---|---|---|
微滤 | 中空纤维式,PVDF(聚偏氟乙烯),0.1μm | 城市污水(格栅出水),COD 345.3mg·L-1±157.25mg·L-1,含30mg·L-1 PAC(聚氯化铝) | COD捕获率70%,浓缩液COD 16g·L-1 | 总均值13.3(共295h,含3个周期) | <7 | 当TMP达到7×104Pa时进行物理清洗 | [ |
中空纤维膜,PVDF,0.1μm,二级MF串联 | 城市污水(初沉池进水),COD 240mg·L-1 | COD捕获率75%,二级浓缩液COD 3600~6843mg·L-1 | 恒定膜通量运行,MF1 20.8,MF2 16.7 | UF1<3 UF2 <2 200h | 每隔12h进行30s的化学清洗,药剂为次氯酸钠或柠檬酸 | [ | |
动态膜过滤 | 平板式,3层不锈钢筛网,25μm | 城市污水(格栅出水),COD 305mg·L-1 | COD去除率63%,浓缩液COD 2~2.5g·L-1 | 30~60(共192h,含4个周期) | <4 | 每隔一个周期(48h)进行一次表面气扫反冲洗 | [ |
陶瓷膜过滤 | 平板式,α-Al2O3,0.1μm | 城市污水,COD 233.0mg·L-1±30.0mg·L-1,含FeCl3 20mg Fe·L-1 | COD去除率:90%浓缩液COD约2.1g·L-1 | 恒定膜通量运行,41.7 | <3.5 | 每隔3~5d进行一次化学清洗,药剂为酸碱、次氯酸钠或双氧水 | [ |
正渗透 | 平板式,CTA(三醋酸纤维),0.3~1nm,(HTI生产) | 城市污水(初沉出水),COD 522mg·L-1,驱动液NaCl 0.5~4mol·L-1 | COD去除率96.5%,浓缩液COD 2714~3289mg·L-1 | 受驱动液影响,初始在25到8不等,体积浓缩10倍后维持在5左右 | — | 气水冲洗+化学清洗(1%次氯酸钠浸泡) | [ |
人工配水,TOC 163.4 mg·L-1,驱动液NaCl 0.5~4mol·L-1 | TOC去除率97%,污水体积缩小10倍,TOC富集4.4~5.9倍 | 5.3~6.4(共168h,含7个周期) | — | 化学清洗(1%次氯酸钠浸泡) | [ |
膜技术 | 膜组件、材料、孔径 | 进水性质 | 富集程度 | 膜通量 /L·m-2·h-1 | 跨膜压差 (TMP)/104Pa | 清洗方式 | 文献 |
---|---|---|---|---|---|---|---|
微滤 | 中空纤维式,PVDF(聚偏氟乙烯),0.1μm | 城市污水(格栅出水),COD 345.3mg·L-1±157.25mg·L-1,含30mg·L-1 PAC(聚氯化铝) | COD捕获率70%,浓缩液COD 16g·L-1 | 总均值13.3(共295h,含3个周期) | <7 | 当TMP达到7×104Pa时进行物理清洗 | [ |
中空纤维膜,PVDF,0.1μm,二级MF串联 | 城市污水(初沉池进水),COD 240mg·L-1 | COD捕获率75%,二级浓缩液COD 3600~6843mg·L-1 | 恒定膜通量运行,MF1 20.8,MF2 16.7 | UF1<3 UF2 <2 200h | 每隔12h进行30s的化学清洗,药剂为次氯酸钠或柠檬酸 | [ | |
动态膜过滤 | 平板式,3层不锈钢筛网,25μm | 城市污水(格栅出水),COD 305mg·L-1 | COD去除率63%,浓缩液COD 2~2.5g·L-1 | 30~60(共192h,含4个周期) | <4 | 每隔一个周期(48h)进行一次表面气扫反冲洗 | [ |
陶瓷膜过滤 | 平板式,α-Al2O3,0.1μm | 城市污水,COD 233.0mg·L-1±30.0mg·L-1,含FeCl3 20mg Fe·L-1 | COD去除率:90%浓缩液COD约2.1g·L-1 | 恒定膜通量运行,41.7 | <3.5 | 每隔3~5d进行一次化学清洗,药剂为酸碱、次氯酸钠或双氧水 | [ |
正渗透 | 平板式,CTA(三醋酸纤维),0.3~1nm,(HTI生产) | 城市污水(初沉出水),COD 522mg·L-1,驱动液NaCl 0.5~4mol·L-1 | COD去除率96.5%,浓缩液COD 2714~3289mg·L-1 | 受驱动液影响,初始在25到8不等,体积浓缩10倍后维持在5左右 | — | 气水冲洗+化学清洗(1%次氯酸钠浸泡) | [ |
人工配水,TOC 163.4 mg·L-1,驱动液NaCl 0.5~4mol·L-1 | TOC去除率97%,污水体积缩小10倍,TOC富集4.4~5.9倍 | 5.3~6.4(共168h,含7个周期) | — | 化学清洗(1%次氯酸钠浸泡) | [ |
碳捕获工艺 | 污泥龄 | 加药 | TN去除率/% | NH | TP去除率/% | PO | 文献 |
---|---|---|---|---|---|---|---|
HRAS | SRT=0.5d | 无 | 22.3±4.6 | 8.2±2.1 | 15.2±2.1 | 5.1±2.3 | [ |
SRT=2.4d | 无 | 42.6±4.1 | 29.6±3.0 | 28.3±4.7 | 14.7±2.0 | ||
SRT=0.22d | 无 | — | 17±4 | 35±11 | 43±8 | [ | |
SRT=0.22d | 无 | — | 12±4 | 23±5 | 29±9 | ||
SRT=0.9d | 无 | — | 19±4 | — | 13±4 | [ | |
30mg·L-1 FeCl3 | — | — | — | 99 | |||
CEPT | — | 25mg·L-1 FeCl3 | — | 9.1 | 95 | — | [ |
动态膜过滤 | — | 无 | 22.9 | 8.7 | 14.5 | 5.8 | [ |
陶瓷膜过滤 | — | 15mg-Al·L-1 | — | 43.1 | 99.5 | — | [ |
正渗透 | — | 无 | 94.9 | 94.1 | 95.3 | — | [ |
碳捕获工艺 | 污泥龄 | 加药 | TN去除率/% | NH | TP去除率/% | PO | 文献 |
---|---|---|---|---|---|---|---|
HRAS | SRT=0.5d | 无 | 22.3±4.6 | 8.2±2.1 | 15.2±2.1 | 5.1±2.3 | [ |
SRT=2.4d | 无 | 42.6±4.1 | 29.6±3.0 | 28.3±4.7 | 14.7±2.0 | ||
SRT=0.22d | 无 | — | 17±4 | 35±11 | 43±8 | [ | |
SRT=0.22d | 无 | — | 12±4 | 23±5 | 29±9 | ||
SRT=0.9d | 无 | — | 19±4 | — | 13±4 | [ | |
30mg·L-1 FeCl3 | — | — | — | 99 | |||
CEPT | — | 25mg·L-1 FeCl3 | — | 9.1 | 95 | — | [ |
动态膜过滤 | — | 无 | 22.9 | 8.7 | 14.5 | 5.8 | [ |
陶瓷膜过滤 | — | 15mg-Al·L-1 | — | 43.1 | 99.5 | — | [ |
正渗透 | — | 无 | 94.9 | 94.1 | 95.3 | — | [ |
1 | 曲久辉, 吴乾元, 穆杨, 等. 城市污水再生与循环利用的关键基础科学问题[J]. 中国基础科学, 2017, 19(1): 6-12. |
QU Jiuhui, WU Qianyuan, MU Yang, et al. Critical fundamental scientific problems in reclamation and reuse of municipal wastewater[J]. China Basic Science, 2017, 19(1): 6-12. | |
2 | METCALF, EDDY I. Wastewater engineering: treatment and reuse[M]. New York: McGraw-Hill, 2003. |
3 | MCCARTY P L, Jaeho BAE, KIM Jeonghwan. Domestic wastewater treatment as a net energy producer-can this be achieved[J]. Environmental Science & Technology, 2011, 45(17): 7100-7106. |
4 | BATSTONE D J, HULSEN T, MEHTA C M, et al. Platforms for energy and nutrient recovery from domestic wastewater: a review[J]. Chemosphere, 2015, 140: 2-11. |
5 | 沈耀良. 城市污水处理技术: 过去现在将来[J]. 苏州科技学院学报(工程技术版), 2018, 31(4): 1-13. |
SHEN Yaoliang. Municipal wastewater treatment: past, present and future[J]. Journal of Suzhou University of Science and Technology (Engineering and Technology), 2018, 31(4): 1-13. | |
6 | LI Wenwei, YU Hanqing, RITTMANN B E. Reuse water pollutants[J]. Nature, 2015, 528(7580): 29-31. |
7 | KHIEWWIJIT R, TEMMINK H, RIJNAARTS H, et al. Energy and nutrient recovery for municipal wastewater treatment: how to design a feasible plant layout[J]. Environmental Modelling & Software, 2015, 68: 156-165. |
8 | 郝晓地, 方晓敏, 李季, 等. 污水碳中和运行潜能分析[J]. 中国给水排水, 2018, 34(10): 11-16. |
HAO Xiaodi, FANG Xiaomin, LI Ji, et al. Analysis of potential in carbon-neutral operation of WWTPs[J]. China Water and Wastewater, 2018, 34(10): 11-16. | |
9 | XIONG Jiaqing, YU Shichun, HU Yisong, et al. Applying a dynamic membrane filtration (DMF) process for domestic wastewater preconcentration: organics recovery and bioenergy production potential analysis[J]. The Science of the Total Environment, 2019, 680: 35-43. |
10 | JIN Zhengyu, GONG Hui, TEMMINK H, et al. Efficient sewage pre-concentration with combined coagulation microfiltration for organic matter recovery[J]. Chemical Engineering Journal, 2016, 292: 130-138. |
11 | BOWEN E J, DOLFING J, DAVENPORT R J, et al. Low-temperature limitation of bioreactor sludge in anaerobic treatment of domestic wastewater[J]. Water Science & Technology, 2014, 69(5): 1004-1013. |
12 | LEVINE A D, TCHOBANOGLOUS G, ASANO T. Characterization of the size distribution of contaminants in wastewater: treatment and reuse implications[J]. Journal of Water Pollution Control Federation, 1985, 57(7): 805-816. |
13 | MEERBURG F A, BOON N, WINCKEL T V, et al. Live fast, die young: optimizing retention times in high-rate contact stabilization for maximal recovery of organics from wastewater[J]. Environmental Science & Technology, 2016, 50(17): 9781-9790. |
14 | RAHMAN A, MEERBURG F A, RAVADAGUNDHI S, et al. Bioflocculation management through high-rate contact-stabilization: a promising technology to recover organic carbon from low-strength wastewater[J]. Water Research, 2016, 104: 485-496. |
15 | FAUST L, TEMMINK H, ZWIJNENBURG A, et al. High loaded MBRs for organic matter recovery from sewage: effect of solids retention time on bioflocculation and on the role of extracellular polymers[J]. Water Research, 2014, 56: 258-266. |
16 | TABOADA-SANTOS A, RIBADULLA E, PAREDES L, et al. Comprehensive comparison of chemically enhanced primary treatment and high-rate activated sludge in novel wastewater treatment plant configurations[J]. Water Research, 2020, 169: 115285. |
17 | CHAKRABORTY T, GABRIEL M, AMIRI A S, et al. Carbon and phosphorus removal from primary municipal wastewater using recovered aluminum[J]. Environmental Science & Technology, 2017, 51(21): 12302-12309. |
18 | HE Pinjing, XUE Junfeng, SHAO Liming, et al. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill[J]. Water Research, 2006, 40(7): 1465-1473. |
19 | NIEUWENHUIJZEN A F VAN, GRAAF J H VAN DER, KAMPSCHREUR M J, et al. Particle related fractionation and characterisation of municipal wastewater[J]. Water Science & Technology, 2004, 50(12): 125-132. |
20 | NOGAI T M, RAHMAN A, MILLER M W, et al. Soluble substrate removal determination through intracellular storage in high-rate activated sludge systems using stoichiometric mass balance approach[J]. New Biotechnology, 2019, 52: 84-93. |
21 | RAHMAN A, DE CLIPPELEIR H, THOMAS W, et al. A-stage and high-rate contact-stabilization performance comparison for carbon and nutrient redirection from high-strength municipal wastewater[J]. Chemical Engineering Journal, 2019, 357: 737-749. |
22 | SANCHO I, LOPEZ-PALAU S, AREPACOCHAGA N, et al. New concepts on carbon redirection in wastewater treatment plants: a review[J]. Science of the Total Environment, 2019, 647: 1373-1384. |
23 | LATEEF S K, Bing Zheng SOH, KIMURA K. Direct membrane filtration of municipal wastewater with chemically enhanced backwash for recovery of organic matter[J]. Bioresource Technology, 2013, 150: 149-155. |
24 | MAGRAM S F, AZEEM M M A. Evaluation of the performance of dynamic sand filtration under real working conditions[J]. Research Journal of Environmental Sciences, 2008, 2(1): 52-57. |
25 | REMY C, BOULESTREAU M, LESJEAN B. Proof of concept for a new energy-positive wastewater treatment scheme[J]. Water Science & Technology, 2014, 70(10): 1709. |
26 | CAGNETTA C, SAERENS B, MEERBURG F A, et al. High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery[J]. Bioresource Technology, 2019, 291: 121833. |
27 | CHEN Yun, LIN Hui, SHEN Nan, et al. Phosphorus release and recovery from Fe-enhanced primary sedimentation sludge via alkaline fermentation[J]. Bioresource Technology, 2019, 278: 266-271. |
28 | MEERBURG F A, BOON N, WINCKEL T VAN, et al. Toward energy-neutral wastewater treatment: a high-rate contact stabilization process to maximally recover sewage organics[J]. Bioresource Technology, 2015, 179: 373-381. |
29 | RAHMAN A, MOSQUERA M, THOMAS W, et al. Impact of aerobic famine and feast condition on extracellular polymeric substance production in high-rate contact stabilization systems[J]. Chemical Engineering Journal, 2017, 328: 74-86. |
30 | DE GRAAFF M S, BRANDTESSA T P H VAN DEN, ROEST K, et al. Full-scale highly-loaded wastewater treatment processes (A-stage) to increase energy production from wastewater: performance and design guidelines[J]. Environmental Engineering Science, 2016, 33: 571-577. |
31 | 邱慎初. 化学强化一级处理(CEPT)技术[J]. 中国给水排水, 2000(1): 26-29. |
QIU Shenchu. Overview of chemically enhanced primary treatment (CEPT)[J]. China Water and Wastewater, 2000(1): 26-29. | |
32 | WEI Hua, GAO Boqiang, REN Jie, et al. Coagulation/flocculation in dewatering of sludge: a review[J]. Water Research, 2018, 143: 608-631. |
33 | WANG Li, LIANG Wenyan, YU Jian, et al. Flocculation of microcystis aeruginosa using modified larch tannin[J]. Environmental Science & Technology, 2013, 47(11): 5771-5777. |
34 | 李立欣, 刘婉萌, 马放. 复合型微生物絮凝剂研究进展[J]. 化工学报, 2018, 69(10): 9-17. |
LI Lixin, LIU Wanmeng, MA Fang. Research advances in compound bioflocculant[J]. CIESC Journal, 2018, 69(10): 9-17. | |
35 | MATHIEU L, BENOIT B. Selection of media for the design of ballasted flocculation processes[J]. Water Research, 2018, 147: 25-32. |
36 | DESJARDINS R, DESJARDINS C, KOUDJONOU B. Laboratory study of ballasted flocculation[J]. Water Research, 2002, 36(3): 744-754. |
37 | 卞子敏, 袁林江. 初沉预处理在生活污水处理中的作用试验[J]. 环保科技, 2009(2): 38-40. |
BIAN Zimin, YUAN Linjiang. The experiment on the function of the pretreatment of the sediment tank in the treatment of domestic wastewater[J]. Environmental Technology, 2009(2): 38-40. | |
38 | 王社平, 鞠兴华, 彭党聪. 城市污水处理厂初沉池对污染物去除效果的研究[J]. 中国给水排水, 2006(5): 96-98. |
WANG Sheping, JU Xinhua, PENG Dangcong. Study on removal of pollutants from primary settling tanks of municipal wastewater treatment plant[J]. China Water and Wastewater, 2006(5): 96-98. | |
39 | 王东海, 文湘华. 低浓度生活污水化学强化一级处理的试验研究[J]. 给水排水, 1999(9): 10. |
WANG Donghai, WEN Xianghua. Research on chemical enhanced primary treatment of low concentration domestic wastewater[J]. Water and Wastewater Engineering, 1999 (9): 10. | |
40 | 黄天寅, 夏四清, 吴志平, 等. 上海合流一期污水混凝处理试验研究[J]. 苏州科技学院学报(工程技术版), 2004, 17(2): 6-10. |
HUANG Tianyin, XIA Siqing, WU Zhiping, et al. A study of treatment of Shanghai first-phase combined wastewater by coagulation[J]. Journal of Suzhou University of Science and Technology(Engineering and Technology), 2004, 17(2): 6-10. | |
41 | 张敬东, 徐金兰, 潘玲. 生活污水混凝处理试验研究[J]. 环境科学与技术, 2004(1): 34-35. |
ZHANG Jindong, XU Jinlan, PAN Ling. A study on flocculation of domestic wastewater[J]. Environmental Science Technology, 2004(1): 34-35. | |
42 | 亓化亮, 陈学民. 城镇污水混凝预处理及污泥厌氧消化试验研究[J]. 兰州交通大学学报, 2004(4): 41-44. |
QI Hualiang, CHEN Xuemin. A study on coagulation pretreatment and sludge anaerobic digestion of urban sewage[J]. Journal of Lanzhou Jiaotong University (Natural Sciences), 2004(4): 41-44. | |
43 | AIYUK S, AMOAKO J, RASKIN L, et al. Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment concept[J]. Water Research, 2004, 38(13): 3031-3042. |
44 | 吴小宁. 城市污水混凝强化一级处理的研究[J]. 应用化工, 2005(6): 55-56. |
WU Xiaoning. Research in chemical enhanced primary treatment on municipal wastewater[J]. Applied Chemical Industry, 2005(6): 55-56. | |
45 | 刘海龙, 付晶淼, 郭雪峰. 农村污水阳离子聚丙烯酰胺强化絮凝研究[J]. 水处理技术, 2016(9): 37-40. |
LIU Hailong, FU Jinmiao, GUO Xuefeng. Study on enhanced dlocculation of rural sewage by cationic polyacrylamide[J]. Technology of Water Treatment, 2016(9): 37-40. | |
46 | PAL S, GHORAI S, DASH M K, et al. Flocculation properties of polyacrylamide grafted carboxymethyl guar gum (CMG-g-PAM) synthesised by conventional and microwave assisted method[J]. Journal of Hazardous Materials, 2011, 192(3): 1580-1588. |
47 | BELTRÁN-HEREDIA J, SÁNCHEZ-MARTÍN J. Municipal wastewater treatment by modified tannin flocculant agent[J]. Desalination, 2009, 249(1): 353-358. |
48 | ZHAO Qingliang, ZHONG Huiyuan, WANG Kun, et al. Removal and transformation of organic matters in domestic wastewater during lab-scale chemically enhanced primary treatment and a trickling filter treatment[J]. Journal of Environmental Sciences, 2013, 25(1): 59-68. |
49 | Theam Yiew OOI, YONG Ee Ling, DIN M F M, et al. Optimization of aluminium recovery from water treatment sludge using response surface methodology[J]. Journal of Environmental Management, 2018, 228: 13-19. |
50 | ZHAO Zhenye, GU Jidong, LI Haibo, et al. Disinfection characteristics of the dissolved organic fractions at several stages of a conventional drinking water treatment plant in Southern China[J]. Journal of Hazardous Materials, 2009, 172: 1093-1099. |
51 | LIU Zhouzhou, WEI Hua, LI Aimin, et al. Evaluation of structural effects on the flocculation performance of a co-graft starch-based flocculant[J]. Water Research, 2017, 118: 160-166. |
52 | GUO Kangying, GAO Baoyu, WANG Wenyu, et al. Evaluation of molecular weight, chain architectures and charge densities of various lignin-based flocculants for dye wastewater treatment[J]. Chemosphere, 2019, 215: 214-226. |
53 | LI Ruihua, GAO Baoyu, SUN Shenglei, et al. Coagulation behavior and floc structure characteristics of cationic lignin-based polymer-polyferric chloride dual-coagulants under different coagulation conditions[J]. RSC Advanced, 2015, 5(121): 100030-100038. |
54 | 潘旭东, 徐海波, 魏文宇. 载体絮凝技术的应用与发展现状[J]. 中国给水排水, 2007, 23(8): 1-4. |
PAN Xudong, XU Haibo, WEI Wenyu. Application and development status of ballasted flocculation technology[J]. China Water and Wastewater, 2007, 23(8): 1-4. | |
55 | LANDON S, DONAHUE C, JEYANAYAGAM S, et al. Rain check: columbus, Ohio, considers ballasted flocculation to treat its wet weather flows[J]. Journal of Water and Environment Technology, 2006, 18(7): 30-35. |
56 | HÖG A, LUDWIG J, BEERY M. The use of integrated flotation and ceramic membrane filtration for surface water treatment with high loads of suspended and dissolved organic matter[J]. Journal of Water Process Engineering, 2015, 6: 126-135. |
57 | WATSON K, FARRE M J, KNIGHT N. Enhanced coagulation with powdered activated carbon or MIEX® secondary treatment: a comparison of disinfection by-product formation and precursor removal[J]. Water Research, 2015, 68: 454-466. |
58 | 董丽华, 刘文君, 蒋仁甫, 等. 给水深度处理活性炭的孔隙结构特征探讨[J]. 给水排水. 2014, 50(1): 91-94. |
DONG Lihua, LIU Wenjun, JIANG Renfu, et al. Study on structure characteristics of activated carbon for advanced treatment water supply[J]. Water and Wastewater Engineering, 2014, 50(1): 91-94. | |
59 | XU Guoren, ZHANG W T, LI Guibai. Adsorbent obtained from CEPT sludge in wastewater chemically enhanced treatment[J]. Water Research, 2005, 39(20): 5175-5185. |
60 | 任建新. 膜分离技术及其应用[M]. 北京: 化学工业出版社, 2003. |
REN Jianxin. Membrane separation technology and its application[M]. Beijing: Chemical Industry Press, 2003. | |
61 | HUANG Baocheng, GUAN Yanfang, CHEN Wei, et al. Membrane fouling characteristics and mitigation in a coagulation-assisted microfiltration process for municipal wastewater pretreatment[J]. Water Research, 2017, 123: 216-223. |
62 | PRAMANIK B K, SHU Li, JEGATHEESAN V, et al. Effect of the coagulation/persulfate pre-treatment to mitigate organic fouling in the forward osmosis of municipal wastewater treatment[J]. Journal of Environmental Management, 2019, 249: 109394. |
63 | ZHAO Yanxia, LI Pu, LI Ruohong, et al. Direct filtration for the treatment of the coagulated domestic sewage using flat-sheet ceramic membranes[J]. Chemosphere, 2019, 223: 383-390. |
64 | LEI Zhen, YANG Shuming, LI Yuyou, et al. Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature: a review of achievements, challenges, and perspectives[J]. Bioresource Technology, 2018, 267: 756-768. |
65 | 杨彤, 张和田, 郭冀峰, 等. PVDF膜的亲水改性及其抗污染性能的研究新进展[J]. 应用化工, 2019, 48(1): 180-183. |
YANG Tong, ZHANG Hetian, GUO Jifeng, et al. The research progress of hydrophilic modification and antifouling properties of PVDF membrane[J]. Applied Chemical Industry, 2019, 48(1): 180-183. | |
66 | FAN Bin, HUANG Xia. Characteristics of a self-forming dynamic membrane coupled with a bioreactor for municipal wastewater treatment[J]. Environmental Science & Technology, 2002, 36(23): 5245-5251. |
67 | GAO Yue, FANG Zhou, CHEN Cheng, et al. Evaluating the performance of inorganic draw solution concentrations in an anaerobic forward osmosis membrane bioreactor for real municipal sewage treatment[J]. Bioresource Technology, 2020, 307: 123254. |
68 | LI M, WANG X, PORTER C J, et al. Concentration and recovery of dyes from textile wastewater using a self-standing, support-free forward osmosis membrane[J]. Environmental Science & Technology, 2019, 53(6): 3078-3086. |
69 | 李刚, 李雪梅, 柳越, 等. 正渗透原理及浓差极化现象[J]. 化学进展, 2010, 22(5): 812-821. |
LI Gang, LI Xuemei, LIU Yue, et al. Forward osmosis and concentration polarization[J]. Progress in Chemistry, 2010, 22(5): 812-821. | |
70 | VINARDELL S, ASTALS S, MATA-ALVAREZ J, et al. Techno-economic analysis of combining forward osmosis-reverse osmosis and anaerobic membrane bioreactor technologies for municipal wastewater treatment and water production[J]. Bioresource Technology, 2020, 297: 122395. |
71 | ANSARI A J, HAI F I, PRICE W E, et al. Forward osmosis as a platform for resource recovery from municipal wastewater - a critical assessment of the literature[J]. Journal of Membrane Science, 2017, 529: 195-206. |
72 | LI Meng, LI Kun, WANG Lianjun, et al. Feasibility of concentrating textile wastewater using a hybrid forward osmosis-membrane distillation (FO-MD) process: performance and economic evaluation[J]. Water Research, 2020, 172: 115488. |
73 | ZOU Shiqiang, HE Zhen. Electrodialysis recovery of reverse-fluxed fertilizer draw solute during forward osmosis water treatment[J]. Chemical Engineering Journal, 2017, 330: 550-558. |
74 | GAO Yue, FANG Zhou, LIANG Peng, et al. Direct concentration of municipal sewage by forward osmosis and membrane fouling behavior[J]. Bioresource Technology, 2017, 247: 730-735. |
75 | 方舟, 高悦, 梁鹏, 等. 正渗透膜浓缩生活污水效果及膜过程特性[J]. 中国给水排水, 2015, 31(5): 40-44. |
FANG Zhou, GAO Yue, LIANG Peng, et al. Membrane process and performance of forward osmosis for concentrating synthetic sewage[J]. China Water and Wastewater, 2015, 31(5): 40-44. | |
76 | CAGNETTA C, COMA M, VLAEMINCK S E, et al. Production of carboxylates from high rate activated sludge through fermentation[J]. Bioresource Technology, 2016, 217: 165-172. |
77 | LIN Lin, Longhang TAM, XIA Xue, et al. Electro-fermentation of iron-enhanced primary sedimentation sludge in a two-chamber bioreactor for product separation and resource recovery[J]. Water Research, 2019, 157: 145-154. |
78 | LIN Lin, LI Xiaoyan. Effects of pH adjustment on the hydrolysis of Al-enhanced primary sedimentation sludge for volatile fatty acid production[J]. Chemical Engineering Journal, 2018, 346: 50-56. |
79 | CHEN Yaoning, WU Yanxin, WANG Dongbo, et al. Understanding the mechanisms of how poly aluminium chloride inhibits short-chain fatty acids production from anaerobic fermentation of waste activated sludge[J]. Chemical Engineering Journal, 2018, 334: 1351-1360. |
80 | GE Huoqing, BATSTONE D J, MOUICHE M, et al. Nutrient removal and energy recovery from high-rate activated sludge processes – impact of sludge age[J]. Bioresource Technology, 2017, 254: 1155-1161. |
81 | GE Zheng, ZHANG Fei, GRIMAUD J, et al. Long-term investigation of microbial fuel cells treating primary sludge or digested sludge[J]. Bioresource Technology, 2013, 136: 509-514. |
82 | 邵立明, 李天水, 王天烽, 等. 剩余污泥热水溶性有机物的提取方法优化研究[J]. 环境科学研究, 2014, 27(1): 71-77. |
SHAO Liming, LI Tianshui, WANG Tianfeng, et al. Optimization for extraction of hot water-soluble organic matter from waste activated sludge[J]. Research of Environmental Sciences, 2014, 27(1): 71-77. | |
83 | GARCÍA M, URREA J L, COLLADO S, et al. Protein recovery from solubilized sludge by hydrothermal treatments[J]. Waste Management, 2017, 67: 278-287. |
84 | BORA A P, GUPTA D P, DURBHA K S. Sewage sludge to bio-fuel: a review on the sustainable approach of transforming sewage waste to alternative fuel[J]. Fuel, 2020, 259: 116262. |
85 | Jongkeun LEE, SOHN Donghwan, Kwanyong LEE, et al. Solid fuel production through hydrothermal carbonization of sewage sludge and microalgae Chlorella sp. from wastewater treatment plant[J]. Chemosphere, 2019, 230: 157-163. |
86 | LIN Yousheng, MA Xiaoqian, PENG Xiaowei, et al. Hydrothermal carbonization of typical components of municipal solid waste for deriving hydrochars and their combustion behavior[J]. Bioresource Technology, 2017, 243: 539-547. |
87 | BILLER P, JOHANNSEN I, PASSOS J S DOS, et al. Primary sewage sludge filtration using biomass filter aids and subsequent hydrothermal co-liquefaction[J]. Water Research, 2018, 130: 58-68. |
88 | LI Rundong, MA Zhiming, YANG Tianhua, et al. Sub-supercritical liquefaction of municipal wet sewage sludge to produce bio-oil: effect of different organic-water mixed solvents[J]. The Journal of Supercritical Fluids, 2018, 138: 115-123. |
89 | ZHU W, XU Zhirong, LI L, et al. The behavior of phosphorus in sub- and super-critical water gasification of sewage sludge[J]. Chemical Engineering Journal, 2011, 171(1): 90-196. |
90 | AMRULLAH A, MATSUMURA Y. Supercritical water gasification of sewage sludge in continuous reactor[J]. Bioresource Technology, 2018, 249: 276-283. |
91 | KUAN Yong Hao, WU Fang Hsien, CHEN Guan Bang, et al. Study of the combustion characteristics of sewage sludge pyrolysis oil, heavy fuel oil, and their blends[J]. Energy, 2020, 201: 117559. |
92 | MEI Zhenfei, CHEN Dezhen, ZHANG Jixuan, et al. Sewage sludge pyrolysis coupled with self-supplied steam reforming for high quality syngas production and the influence of initial moisture content[J]. Waste Management, 2020, 106: 77-87. |
93 | WANG Chenyu, ZHU Wei, GONG Miao, et al. Influence of H2O2 and Ni catalysts on hydrogen production and PAHs inhibition from the supercritical water gasification of dewatered sewage sludge[J]. The Journal of Supercritical Fluids, 2017, 130: 183-188. |
94 | HU Yanjun, XIA Yuanyuan, DI MAIO F, et al. Investigation of polycyclic aromatic hydrocarbons (PAHs) formed in three-phase products from the pyrolysis of various wastewater sewage sludge[J]. Journal of Hazardous Materials, 2020, 389: 122045. |
95 | MANNINA G, PRESTI D, MONTIEL-JARILLO G, et al. Bioplastic recovery from wastewater: a new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures[J]. Bioresource Technology, 2019, 282: 361-369. |
96 | XUE Weiqi, ZENG Qian, LIN Sen, et al. Recovery of high-value and scarce resources from biological wastewater treatment: sulfated polysaccharides[J]. Water Research, 2019, 163: 114889. |
97 | MATASSA S, BATSTONE D J, HÜLSEN T, et al. Can direct conversion of used nitrogen to new feed and protein help feed the world[J]. Environmental Science & Technology, 2015, 49(9): 5247-5254. |
98 | CHOI Oh Kyung, Kwanhyoung LEE, PARK Ki Young, et al. Pre-recovery of fatty acid methyl ester (FAME) and anaerobic digestion as a biorefinery route to valorizing waste activated sludge[J]. Renewable Energy, 2017, 108: 548-554. |
99 | ALLOUL A, GANIGUÉ R, SPILLER M, et al. Capture-ferment-upgrade: a three-step approach for the valorization of sewage organics as commodities[J]. Environmental Science & Technology, 2018, 52(12): 6729-6742. |
100 | BOLZONELLA D, PAVAN P, BATTISTONI P, et al. Mesophilic anaerobic digestion of waste activated sludge: influence of the solid retention time in the wastewater treatment process[J]. Process Biochemistry, 2005, 40(3/4): 1453-1460. |
101 | SHAO Liming, WANG Guanzhao, XU Huacheng, et al. Effects of ultrasonic pretreatment on sludge dewaterability and extracellular polymeric substances distribution in mesophilic anaerobic digestion[J]. Journal of Environmental Sciences, 2010, 22(3): 474-480. |
102 | LATID M A, MEHTA C M, BASTONE D J, Influence of low pH on continuous anaerobic digestion of waste activated sludge[J]. Water Research, 2017, 113: 42-49. |
103 | LI Xiang, YUAN Yan, HUANG Yong, et al. Transformation and migration of phosphorus in excess sludge reduction pretreatment by alkaline ferrate oxidation combined with anaerobic digestion[J]. Journal of Environmental Sciences, 2020, 92: 224-234. |
104 | CHEN Huihui, RAO Yue, CAO Leichang, et al. Hydrothermal conversion of sewage sludge: focusing on the characterization of liquid products and their methane yields[J]. Chemical Engineering Journal, 2019, 357: 367-375. |
105 | 张胜, 许海凤, 张盼月, 等. 金属铁铝对混凝强化初沉污泥中温厌氧消化的影响[J]. 环境工程学报, 2014, 8(2): 735-739. |
ZHANG Sheng, XU Haifeng, ZHANG Panyue, et al. Effect of iron and aluminium content on anaerobic digestion of primary sludge enhanced by coagulation[J]. Chinese Journal of Environmental Engineering, 2014, 8(2): 735-739. | |
106 | SHENG Guoping, XU Juan, LI Weihua, et al. Quantification of the interactions between Ca2+, Hg2+ and extracellular polymeric substances (EPS) of sludge[J]. Chemosphere, 2013. 93(7): 1436-1441. |
107 | DENTEL S K, GOSSETT J M. Effect of chemical coagulation on anaerobic digestibility of organic materials[J]. Water Research, 1982. 16(5): 707-718. |
108 | JU Feng, WANG Yubo, LAU F T K, et al. Anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge and the microbial community structure[J]. Applied Microbiology & Biotechnology, 2016, 100(20): 8975-8982. |
109 | CHU C P, LEE D J, CHANG B, et al. Anaerobic digestion of polyelectrolyte flocculated waste activated sludge[J]. Chemosphere. 2003, 53(7): 757-764. |
110 | LIU Zhouzhou, HUANG Mu, LI Aimin. et al. Flocculation and antimicrobial properties of a cationized starch[J]. Water Research, 2017, 119: 57-66. |
111 | DAI Xiaohu, XU Ying, DONG Bin. Effect of the micron-sized silica particles (MSSP) on biogas conversion of sewage sludge[J]. Water Research, 2017, 115: 220-228. |
112 | LIN Lin, LI Ruohong, LI Xiaoyan. Recovery of organic resources from sewage sludge of Al-enhanced primary sedimentation by alkali pretreatment and acidogenic fermentation[J]. Journal of Cleaner Production, 2018, 172: 3334-3341. |
113 | LIN Lin, LI Xiaoyan. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids[J]. Chemosphere, 2018. 194: 692-700. |
114 | GAO Yue, FANG Zhou, LIANG Peng, et al. Anaerobic digestion performance of concentrated municipal sewage by forward osmosis membrane: focus on the impact of salt and ammonia nitrogen[J]. Bioresource Technology, 2019, 276: 204-210. |
115 | 郝晓地, 程慧芹, 胡沅胜. 碳中和运行的国际先驱奥地利Strass污水厂案例剖析[J]. 中国给水排水, 2014, 30(22): 1-5. |
HAO Xiaodi, CHEN Huiqin, HU Yuansheng. International pioneer of carbon-neutral operation of wastewater treatment: a case study at strass in Austria[J]. China Water and Wastewater, 2014, 30(22): 1-5. | |
116 | WANG Hongtao, LI Fengting, KELLER A A, et al. Chemically enhanced primary treatment (CEPT) for removal of carbon and nutrients from municipal wastewater treatment plants: a case study of Shanghai[J]. Water Science & Technology, 2009, 60(7): 1803-1809. |
117 | LIN Lin, LI Ruohong, LI Yun, et al. Recovery of organic carbon and phosphorus from wastewater by Fe-enhanced primary sedimentation and sludge fermentation[J]. Process Biochemistry, 2017, 54: 135-139. |
118 | LI Wanxin, ZHANG Xiangru, LI Xiaoyan, et al. Mystery of the high chlorine consumption in disinfecting a chemically enhanced primary saline sewage[J]. Water Research, 2018, 145: 181-189. |
119 | ROLDAN M, BOUZAS A, SECO A, et al. An integral approach to sludge handling in a WWTP operated for EBPR aiming phosphorus recovery: simulation of alternatives, LCA and LCC analyses[J]. Water Research, 2020, 175: 115647. |
120 | LIANG Sha, CHEN Haoming, ZENG Xiaohui, et al. A comparison between sulfuric acid and oxalic acid leaching with subsequent purification and precipitation for phosphorus recovery from sewage sludge incineration ash[J]. Water Research, 2019, 159: 242-251. |
121 | 徐婷, 李勇, 朱怡嘉, 等. 以膜分离为主的物化法对城市污水中污染因子的去除特性分析[J]. 环境科学, 2019, 40(3): 1353-1359. |
XU Ting, LI Yong, ZHU Yijia, et al. Assessing performance of pollutant removal from municipal wastewater by physical and chemical methods based on membranes[J]. Environmental Science, 2019, 40(3): 1353-1359. | |
122 | 张淮巽, 袁怡, 王旭东, 等. 混合无机盐汲取液在城市污水正渗透浓缩技术中的应用[J]. 环境工程学报, 2020, 14(6): 1111-1118. |
ZHANG Huaixun, YUAN Yi, WANG Xudong, et al. Application of mixing inorganic salt as draw solution in forward osmosis concentration technology[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1111-1118. | |
123 | LI Xiang, YUAN Yan, HUANG Yong, et al. Inhibition of nitrite oxidizing bacterial activity based on low nitrite concentration exposure in an auto-recycling PN-Anammox process under mainstream conditions[J]. Bioresource Technology, 2019, 281: 303-308. |
124 | ZHANG Hao, BI Zhen, PAN Yang, et al. Enhanced phosphorus storage in suspended biofilm by increasing dissolved oxygen[J]. Science of the Total Environment, 2020, 722: 137876. |
[1] | ZHONG Chuanrong, FENG Mingshi, ZENG Guangyu, HUANG Jinging, HE Xigao. Pre-treatment of the fracturing flow-back fluid of shale and solution structures of a flocculant [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5109-5114. |
[2] | ZHANG Lanhe, YUAN Zhentao, ZHAO Haojie, ZHAO Juntian, ZHU Yining, CHEN Zicheng, JIA Yanping, TIAN Shulei. Effect of external electric current on denitrification efficiency and sludge flocculation of anoxic zone using AO process [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6369-6377. |
[3] | Bo XU, Yongzhi CHI, Hongli ZHANG, Jianhai ZHAO, Yanmei DING, Yifan ZHANG, Yuyou LI. Enhanced treatment of anaerobic digestion reject water by magnetic flocculation technology [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4693-4701. |
[4] | ZHANG Lanhe, WANG Jiaping, CHEN Zicheng, GUO Jingbo, JIA Yanping, ZHANG Haifeng, LI Zheng. Effect of Ca2+ on the properties of activated sludge in the SBR [J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3675-3681. |
[5] | GUO Rui, GUO Yu, WANG Yingyue, SONG Bo, MA Lan, ZHANG Yao. Synthesis and flocculation properties of succinyl chitosan quaternary ammonium salt [J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2806-2813. |
[6] | GUO Yi, HU Jianhua, YANG Zijian, LIANG Hao. Treatment and recycling of riboflavin crystallization mother liquor [J]. Chemical Industry and Engineering Progree, 2016, 35(S2): 324-327. |
[7] | WANG Yi, LI Ping, LUO Man, CAI Wangfeng. Research progress on heavy metal wastewater treatment by load magnetic flocculation [J]. Chemical Industry and Engineering Progree, 2016, 35(S1): 281-284. |
[8] | FANG Qiang, WANG Huai, ZHU Huixia, DENG Shengsong, HE Hongbo, YAO Risheng. Flocculation separation of lignin in the rice straw pretreatment lye [J]. Chemical Industry and Engineering Progree, 2015, 34(11): 4096-4102,4107. |
[9] | LUO Man, CAI Wangfeng, CHEN Yiqing, ZHANG Xubin. Study on treatment of copper waste water by magnetic seeding flocculation [J]. Chemical Industry and Engineering Progree, 2015, 34(11): 4065-4070. |
[10] | WU Yun,DONG Yu,ZHANG Xianming. Study on the application of complex inorganic/organic flocculants in the decolorization of waste hydraulic oil [J]. Chemical Industry and Engineering Progree, 2014, 33(09): 2489-2494. |
[11] | CHEN Jianfa1,LIN Cheng2,LIU Fuquan3,CHEN Yimin1,HUANG Huizhen1. Application of the ozone pretreatment + flocculation + BAF combined process in advanced effluent treatment after secondary biochemical treatment [J]. Chemical Industry and Engineering Progree, 2014, 33(06): 1601-1606. |
[12] | ZHANG Haiyang,KUANG Yali,LIN Zhe. Research progress of harvesting technologies of energy microalgae [J]. Chemical Industry and Engineering Progree, 2013, 32(09): 2092-2098. |
[13] | LI Jingyang1,2,ZHANG Zhongguo2,SUN Chunbao1,LIU Dan2,CHENG Yanjun2. A review of flocculation theories incorporating fractal geometry [J]. Chemical Industry and Engineering Progree, 2012, 31(12): 2609-2614. |
[14] | SUN Jiao1,2,CUI Shaohua1,SUN Zezhan1,KANG Yong1. Study on the flow fields in different baffled flocculation reactors [J]. Chemical Industry and Engineering Progree, 2012, 31(08): 1700-1706. |
[15] | WU Wei1,2,FAN Zhiwei3,XU Liqun3,LI Xingang1,4,SUI Hong1,4. CFD simulation on fluid in flocculation tank and its application [J]. Chemical Industry and Engineering Progree, 2012, 31(02 ): 283-286. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |