Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 845-858.DOI: 10.16085/j.issn.1000-6613.2020-0667
• Industrial catalysis • Previous Articles Next Articles
Yizun LIANG1,2,3(), Yanqing GE1,2,3, Chi WANG1,2,3(), Kai LI4, Yi MEI1,2,3
Received:
2020-04-27
Revised:
2020-08-08
Online:
2021-02-09
Published:
2021-02-05
Contact:
Chi WANG
梁一尊1,2,3(), 葛艳清1,2,3, 王驰1,2,3(), 李凯4, 梅毅1,2,3
通讯作者:
王驰
作者简介:
梁一尊(1995—),男,硕士研究生,研究方向为低维黑磷复合材料光催化剂制备。E-mail:基金资助:
CLC Number:
Yizun LIANG, Yanqing GE, Chi WANG, Kai LI, Yi MEI. Research progress on preparation of low-dimensional black phosphorus and its applications in photodegradation field[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 845-858.
梁一尊, 葛艳清, 王驰, 李凯, 梅毅. 低维黑磷的制备及其在光催化降解领域的应用研究进展[J]. 化工进展, 2021, 40(2): 845-858.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0667
制备方法 | 平均尺寸 | 参考文献 |
---|---|---|
少层黑磷烯 | ||
机械剥离:使用胶带粘撕 | 5nm | [ |
机械剥离:使用胶带粘撕 | 0.85nm | [ |
CVD:将红磷放置于SiO2衬底上生长 | 10~20nm | [ |
CVD:将红磷放置于聚酯纤维衬底上生长 | 40nm | [ |
液相剥离:NMP作为溶剂,超声波清洗器处理24h | 3.5~5nm | [ |
液相剥离:NMP中添加NaOH,在12000r/min的条件下离心 | 3.5nm±2nm | [ |
液相剥离:OTF离子液体作为溶剂 | 2~9nm | [ |
液相剥离:阳极电化学辅助剥离 | 横向尺寸2μm | [ |
液相剥离:添加TAA作为插层剂,阴极电化学辅助剥离 | 横向尺寸10μm | [ |
黑磷量子点 | ||
液相剥离:应用流体力学,高速剪切机辅助剥离 | 2.25nm | [ |
热溶剂法剥离:NMP作为溶剂,在140℃下溶剂热法处理6h | 2.1nm±0.9nm | [ |
制备方法 | 平均尺寸 | 参考文献 |
---|---|---|
少层黑磷烯 | ||
机械剥离:使用胶带粘撕 | 5nm | [ |
机械剥离:使用胶带粘撕 | 0.85nm | [ |
CVD:将红磷放置于SiO2衬底上生长 | 10~20nm | [ |
CVD:将红磷放置于聚酯纤维衬底上生长 | 40nm | [ |
液相剥离:NMP作为溶剂,超声波清洗器处理24h | 3.5~5nm | [ |
液相剥离:NMP中添加NaOH,在12000r/min的条件下离心 | 3.5nm±2nm | [ |
液相剥离:OTF离子液体作为溶剂 | 2~9nm | [ |
液相剥离:阳极电化学辅助剥离 | 横向尺寸2μm | [ |
液相剥离:添加TAA作为插层剂,阴极电化学辅助剥离 | 横向尺寸10μm | [ |
黑磷量子点 | ||
液相剥离:应用流体力学,高速剪切机辅助剥离 | 2.25nm | [ |
热溶剂法剥离:NMP作为溶剂,在140℃下溶剂热法处理6h | 2.1nm±0.9nm | [ |
复合物 | 制备方法 | 光降解效果 | 光吸收变化 | 活性物质 | 参考文献 |
---|---|---|---|---|---|
石墨烯-黑磷烯 | 化学气相沉积法 | 光照下降解2-CP,在180min时,30%质量比的石墨烯-黑磷烯分别降87.08% | 未提及 | ·O | [ |
C60-黑磷烯 | 高能球磨法 | 50min几乎可以把50mL浓度为0.01mg/mL的RhB降解完全 | 无变化 | ·O | [ |
Ag-黑磷烯 | 化学还原法 | 5%Ag-黑磷烯的反应速率常数为0.574min-1,高于商用P25 | 吸收峰变强 | 未提及 | [ |
TiO2-黑磷烯 | 溶剂热法 | 在紫外光照下降解RhB,复合物的反应速率常数为4.62h-1,黑磷烯仅为0.42h-1;在可见光照下分别为2.05h-1和0.23h-1 | 未提及 | ·OH | [ |
黑磷烯-红磷 | 高能球磨法 | 30min时降解了89%的RhB,对比对可见光有较好吸收的CdS,其30min降解率仅为32% | 无变化 | ·OH | [ |
黑磷烯-C3N4 | 液相超声法 | 15min时,10%黑磷烯-C3N4降解了98%的RhB,而C3N4和黑磷烯分别只有55%和2% | 随C3N4添加量变化 | ·O | [ |
ATP-黑磷量子点 | 水热沉积法 | 在180min的可见光照下,BPA的降解率达到90% | 吸收峰变弱 | h+ | [ |
Ag-黑磷烯/GO | 还原并沉积 | 90min后,Ag-黑磷烯/GO和Ag-黑磷烯分别降解了94%和79%的MB | 吸收峰变弱 | 未提及 | [ |
复合物 | 制备方法 | 光降解效果 | 光吸收变化 | 活性物质 | 参考文献 |
---|---|---|---|---|---|
石墨烯-黑磷烯 | 化学气相沉积法 | 光照下降解2-CP,在180min时,30%质量比的石墨烯-黑磷烯分别降87.08% | 未提及 | ·O | [ |
C60-黑磷烯 | 高能球磨法 | 50min几乎可以把50mL浓度为0.01mg/mL的RhB降解完全 | 无变化 | ·O | [ |
Ag-黑磷烯 | 化学还原法 | 5%Ag-黑磷烯的反应速率常数为0.574min-1,高于商用P25 | 吸收峰变强 | 未提及 | [ |
TiO2-黑磷烯 | 溶剂热法 | 在紫外光照下降解RhB,复合物的反应速率常数为4.62h-1,黑磷烯仅为0.42h-1;在可见光照下分别为2.05h-1和0.23h-1 | 未提及 | ·OH | [ |
黑磷烯-红磷 | 高能球磨法 | 30min时降解了89%的RhB,对比对可见光有较好吸收的CdS,其30min降解率仅为32% | 无变化 | ·OH | [ |
黑磷烯-C3N4 | 液相超声法 | 15min时,10%黑磷烯-C3N4降解了98%的RhB,而C3N4和黑磷烯分别只有55%和2% | 随C3N4添加量变化 | ·O | [ |
ATP-黑磷量子点 | 水热沉积法 | 在180min的可见光照下,BPA的降解率达到90% | 吸收峰变弱 | h+ | [ |
Ag-黑磷烯/GO | 还原并沉积 | 90min后,Ag-黑磷烯/GO和Ag-黑磷烯分别降解了94%和79%的MB | 吸收峰变弱 | 未提及 | [ |
1 | 周琳, 李勇. 我国的水污染现状与水环境管理策略研究[J]. 环境与发展, 2018, 30(4): 51-52. |
ZHOU Lin, LI Yong. Research on the current situation of water pollution and water environment management strategy in China[J]. Enviroment & Development, 2018, 30(4): 51-52. | |
2 | CHENG Min, ZENG Guangming, HUANG Danlian, et al. Hydroxyl radicals based advanced oxidation processes for remediation of soils contaminated with organic compounds: a review[J]. Chemical Engineering Journal, 2016, 284(9): 582-598. |
3 | 胡小龙, 孙青, 徐春宏, 等. 纳米TiO2/沸石复合材料光催化降解苯酚的性能[J]. 化工进展, 2016, 35(5): 1519-1523. |
HU Xiaolong, SUN Qing, XU Chunhong, et al. Photocatalytic degradation of phenol by TiO2/zeolite nanocomposite[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1519-1523. | |
4 | 张巧玲, 秦钊, 刘有智, 等. 氧化石墨烯-TiO2复合材料对三种染料的吸附动力学及光催化性能[J]. 化工进展, 2019, 38(6): 2870-2879. |
ZHANG Qiaolin, QIN Zhao, LIU Youzhi, et al. Adsorption kinetics and photocatalytic properties of GO-TiO2 composite for three dyes[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2870-2879. | |
5 | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
6 | FRANK S N, BARD A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J]. The Journal of Physical Chemistry, 1977, 81(15): 1484-1488. |
7 | CHEN Xiaobo, MAO S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007, 107(7): 2891-2959. |
8 | BRIDGMAN P W. Two new modifications of phosphorus[J]. Journal of the American Chemical Society, 1914, 36(7): 1344-1363. |
9 | LI Likai, YU Yijun, YE Guojun, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. |
10 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200. |
11 | RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nat. Nanotechnol., 2011, 6(3): 147-150. |
12 | LI Bisheng, LAI Cui, ZENG Guangming, et al. Black phosphorus, a rising star 2D nanomaterial in the post-graphene era: synthesis, properties, modifications, and photocatalysis applications[J]. Small, 2019, 15(8): 1804565. |
13 | KEYES R. The electrical properties of black phosphorus[J]. Physical Review, 1953, 92(3): 580-584. |
14 | SUN Liqun, LI Mingjuan, SUN Kai, et al. Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2012, 116(28): 14772-14779. |
15 | MARUYAMA Y, SUZUKI S, KOBAYASHI K, et al. Synthesis and some properties of black phosphorus single crystals[J]. Physica B+C, 1981, 105(1/2/3): 99-102. |
16 | ZHAO Ming, WANG Yewu, QIAN Haolei, et al. Growth mechanism and enhanced yield of black phosphorus micro-ribbons[J]. Crystal Growth & Design, 2015, 16(2): 1096-1103. |
17 | 卢秋菊, 汤永威, 赵俊平, 等. 高纯黑磷的低成本宏量制备研究[J]. 磷肥与复肥, 2019, 34(9): 43-47. |
LU Qiuju, TANG Yongwei, ZHAO Junping, et al. Low cost preparation of high purity black phosphorus study[J]. Phosphate & Compound Fertilizer, 2019, 34(9): 43-47. | |
18 | TRAN V, SOKLASKI R, LIANG Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23): 817-824. |
19 | HEMBRAM K P S S, JUNG Hyun, Byung Chul YEO, et al. Unraveling the atomistic sodiation mechanism of black phosphorus for sodium ion batteries by first-principles calculations[J]. The Journal of Physical Chemistry C, 2015, 119(27): 15041-15046. |
20 | RAHMAN M Z, KWONG Chi Wai, DAVEY K, et al. Phosphorene as a water splitting photocatalyst: fundamentals to applications[J]. Energy & Environmental Science, 2016, 9(3): 709-728. |
21 | CAI Kun, LIU Lingnan, SHI Jiao, et al. Winding a nanotube from black phosphorus nanoribbon onto a CNT at low temperature: a molecular dynamics study[J]. Materials & Design, 2017, 121(5): 406-413. |
22 | LIU Han, NEAL A, ZHU Zhen, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041. |
23 | BUSCEMA M, GROENENDIJK D J, BLANTER S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect tansistors[J]. Nano Letters, 2014, 14(6): 3347-3352. |
24 | SMITH J B, HAGAMAN D, JI Haifeng. Growth of 2D black phosphorus film from chemical vapor deposition[J]. Nanotechnology, 2016, 27(21): 215602. |
25 | LI Xuesong, DENG Bingchen, WANG Xiaomu, et al. Synthesis of thin-film black phosphorus on a flexible substrate[J]. 2D Materials, 2015, 2(3): 031002. |
26 | BRENT J R, SAVJANI N, LEWIS E A, et al. Production of few-layer phosphorene by liquid exfoliation of black phosphorus[J]. Chemical Communications, 2014, 50(87): 13338-133341. |
27 | GUO Zhinan, ZHANG Han, LU Shunbin, et al. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics[J]. Advanced Functional Materials, 2015, 25(45): 6996-7002. |
28 | YASAEI P, KUMAR B, FOROOZAN T, et al. High-quality black phosphorus atomic layers by liquid-phase exfoliation[J]. Advanced Materials, 2015, 11(27): 1887-1892. |
29 | ZHU Chongyang, XU Feng, ZHANG Ling, et al. Ultrafast preparation of black phosphorus quantum dots for efficient humidity sensing[J]. Chemistry, 2016, 22(22): 7357-7362. |
30 | CHEN Long, ZHOU Guangmin, LIU Zhibo, et al. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery[J]. Advanced Materials, 2015, 28(3): 510-517. |
31 | KANG Joohoon, WELLS S, WOOD J, et al. Stable aqueous dispersions of optically and electronically active phosphorene[J]. Proceedings of the National Academy of Sciences, 2016, 113(42): 11688-11693. |
32 | ZHAO Wancheng, XUE Zhimin, WANG Jinfang, et al. Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids[J]. ACS Applied Materials & Interfaces, 2015, 7(50): 27608-27612. |
33 | AMBROSI A, SOFER Z, PUMERA M. Electrochemical exfoliation of layered black phosphorus into phosphorene[J]. Angewandte Chemie International Edition, 2017, 56(35): 10443-10445. |
34 | LI Jing, CHEN Cheng, LIU Shule, et al. Ultrafast electrochemical expansion of black phosphorus toward high-yield synthesis of few-layer phosphorene[J]. Chemistry of Materials, 2018, 30(8): 2742-2749. |
35 | XU Feng, MA Hongyu, LEI Shuangying, et al. In situ TEM visualization of superior nanomechanical flexibility of shear-exfoliated phosphorene[J]. Nanoscale, 2016, 8(28): 13603-13610. |
36 | SOFER Z, BOUŠA D, LUXA J, et al. Few-layer black phosphorus nanoparticles[J]. Chemical Communication, 2016, 52(8): 1563-1566. |
37 | XU Yanhua, WANG Zhiteng, GUO Zhinan, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229. |
38 | YUAN Yongjun, YANG Shuhui, WANG Pei, et al. Bandgap-tunable black phosphorus quantum dots: visible-light-active photocatalysts[J]. Chemical Communications, 2018, 54(8): 960-963. |
39 | ZHOU Si, LIU Nanshu, ZHAO Jijun. Phosphorus quantum dots as visible-light photocatalyst for water splitting[J]. Computational Materials Science, 2017, 130(1): 56-63. |
40 | LING Xi, HUANG Shengxi, HASDEO E H, et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus[J]. Nano Lett., 2016, 16(4): 2260-2267. |
41 | ZHOU Qionghua, CHEN Qian, TONG Yilong, et al. Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection[J]. Angewandte Chemie International Edition, 2016, 55(38): 11437-11441. |
42 | FAVRON A, GAUFRES E, FOSSARD F, et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus[J]. Nature Materials, 2015, 14(8): 826-832. |
43 | ZHOU Wenhua, PAN Ting, CUI Haodong, et al. Rediscovery of black phosphorus: bioactive nanomaterials with inherent and selective chemotherapeutic effects[J]. Angewandte Chemie International Edition, 2018, 58(3): 769-774. |
44 | ZHU Mingshan, OSAKADA Y, KIM Sooyeon, et al. Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution[J]. Applied Catalysis B: Environmental, 2017, 217(15): 285-292. |
45 | ZHANG Zhaocheng, HE Dongyang, LIU Haiyang, et al. Synthesis of graphene/black phosphorus hybrid with highly stable P-C bond towards the enhancement of photocatalytic activity[J]. Environmental Pollution, 2019, 245(1): 950-956. |
46 | ZHU Xianjun, ZHANG Taiming, JIANG Daochuan, et al. Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules[J]. Nature Communications, 2018, 9(1): 4177. |
47 | KUNTZ K L, WELLS R A, HU Jun, et al. Control of surface and edge oxidation on phosphorene[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 9126-9135. |
48 | LEI Wanying, ZHANG Tingting, LIU Ping, et al. Bandgap- and local field-dependent photoactivity of Ag/black phosphorus nanohybrids[J]. ACS Catalysis, 2016, 6(12): 8009-8020. |
49 | HE Chengli, QIAN Heming, LI Xiazhang, et al. Visible-light-driven CeO2/black phosphorus heterostructure with enhanced photocatalytic performance[J]. Journal of Materials Science: Materials in Electronics, 2018, 30(20): 593-599. |
50 | HU Jun, GUO Zhenkun, MCWILLIAMS P E, et al. Band gap engineering in a 2D material for solar-to-chemical energy conversion[J]. Nano Lett., 2016, 16(1): 74-79. |
51 | TIAN Bin, TIAN Bining, SMITH B, et al. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(17): 4345-4350. |
52 | CAI Xiaoyan, MAO Liang, YANG Songqiu, et al. Ultrafast charge separation for full solar spectrum-activated photocatalytic H2 generation in a black phosphorus-Au-CdS heterostructure[J]. ACS Energy Letters, 2018, 3(4): 932-939. |
53 | JIN Chen, ZHENG Renyang, GUO Ying, et al. Hydrothermal synthesis and characterization of phosphorous-doped TiO2 with high photocatalytic activity for methylene blue degradation[J]. Journal of Molecular Catalysis A: Chemical, 2009, 313(1): 44-48. |
54 | Hyun Uk LEE, Soon Chang LEE, Jonghan WON, et al. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts[J]. Scientific Reports, 2015, 5(1): 86-91. |
55 | SHEN Zhurui, SUN Shoutian, WANG Wanjun, et al. A black-red phosphorus heterostructure for efficient visible-light-driven photocatalysis[J]. Journal of Materials Chemistry A, 2015, 3(7): 3285-3288. |
56 | FENG Rongjuan, LEI Wanying, Xinyu SUI, et al. Anchoring black phosphorus quantum dots on molybdenum disulfide nanosheets: a 0D/2D nanohybrid with enhanced visible and NIR light photoactivity[J]. Applied Catalysis B: Environmental, 2018, 23(8): 444-453. |
57 | WEN Min, WANG Jiahong, TONG Ruifeng, et al. A low-cost metal-free photocatalyst based on black phosphorus[J]. Advanced Science, 2019, 6(1): 1801321. |
58 | QIU Pengxiang, XU Chenmin, ZHOU Ning, et al. Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with C-P bonds for excellent photocatalytic nitrogen fixation[J]. Applied Catalysis B: Environmental, 2018, 221(1): 27-35. |
59 | ZHENG Yun, YU Zihao, Honghui OU, et al. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation[J]. Advanced Functional Materials, 2018, 28(10): 1705407. |
60 | LIU Fucai, ZHU Chao C, YOU Lu, et al. 2D black phosphorus/SrTiO3 based programmable photoconductive switch[J]. Advanced Materials, 2016, 28(35): 7768-7773. |
61 | DENG Yexin, LUO Zhe, CONRAD N, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction P-N diode[J]. ACS Nano, 2014, 8(8): 8292-8299. |
62 | VITI L, HU Jin, COQUILLAT D, et al. Heterostructured hBN-BP nanodetectors at terahertz frequencies[J]. Advanced Materials, 2016, 28(34): 7390-7396. |
63 | WANG Lian, XU Qingchi, XU Jun, et al. Synthesis of hybrid nanocomposites of ZIF-8 with two-dimensional black phosphorus for photocatalysis[J]. RSC Advances, 2016, 6(73): 69033-69039. |
64 | LI Xiazhang, LI Feihong, LU Xiaowang, et al. Black phosphorus quantum dots/attapulgite nanocomposite with enhanced photocatalytic performance[J]. Functional Materials Letters, 2017, 10(6): 1750078. |
65 | WANG Xin, ZHOU Benqing, ZHANG Youming, et al. In-situ reduction and deposition of Ag nanoparticles on black phosphorus nanosheets co-loaded with graphene oxide as a broad spectrum photocatalyst for enhanced photocatalytic performance[J]. Journal of Alloys and Compounds, 2018, 769(1): 316-324. |
66 | WANG Xin, XIANG Yuren, ZHOU Benqing, et al. Enhanced photocatalytic performance of Ag/TiO2 nanohybrid sensitized by black phosphorus nanosheets in visible and near-infrared light[J]. Journal of Colloid and Interface Science, 2019, 534(1): 1-11. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[4] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[5] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[6] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[7] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[8] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[9] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[10] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[11] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[12] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[13] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[14] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[15] | LIU Nian, CHEN Kui, WU Bin, JI Lijun, WU Yanyang, HAN Jinling. Preparation of yolk-shell mesoporous magnetic carbon microspheres and its efficient adsorption of erythromycin [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2724-2732. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |