Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (11): 4971-4977.DOI: 10.16085/j.issn.1000-6613.2019-0262
• Industrial catalysis • Previous Articles Next Articles
Maoqiang JIANG1,2(),Hong MENG2,Yingzhou LU2,Chunxi LI1,2,3(
)
Received:
2019-02-26
Online:
2019-11-05
Published:
2019-11-05
Contact:
Chunxi LI
通讯作者:
李春喜
作者简介:
姜茂强(1994—),男,硕士研究生,研究方向为电石的利用。E-mail:基金资助:
CLC Number:
Maoqiang JIANG,Hong MENG,Yingzhou LU,Chunxi LI. Synthesis of 1-cyclohexenylacetonitrile using cyclohexanone and acetonitrile under synergetic activation of CaC2 and CsF[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4971-4977.
姜茂强,孟洪,陆颖舟,李春喜. CaC2与CsF活化环己酮与乙腈反应合成环己烯乙腈[J]. 化工进展, 2019, 38(11): 4971-4977.
序号 | 反应物1 | 反应物2 | 促进剂 | 活化剂 | 环己酮转化率/% | 1-环己烯乙腈产率/% |
---|---|---|---|---|---|---|
1 | 环己酮 | 乙腈 | 电石 | — | 0 | 0 |
2 | 环己酮 | 乙腈 | — | 氟化铯 | 0 | 0 |
3 | 环己酮 | 乙腈 | 电石 | 氟化铯 | 92.7 | 75.8 |
4 | 环己酮 | 乙腈 | 电石 | 氟化钾 | 0 | 0 |
序号 | 反应物1 | 反应物2 | 促进剂 | 活化剂 | 环己酮转化率/% | 1-环己烯乙腈产率/% |
---|---|---|---|---|---|---|
1 | 环己酮 | 乙腈 | 电石 | — | 0 | 0 |
2 | 环己酮 | 乙腈 | — | 氟化铯 | 0 | 0 |
3 | 环己酮 | 乙腈 | 电石 | 氟化铯 | 92.7 | 75.8 |
4 | 环己酮 | 乙腈 | 电石 | 氟化钾 | 0 | 0 |
1 | LI Y , LIU Q , LI W , et al . Efficient destruction of hexachlorobenzene by calcium carbide through mechanochemical reaction in a planetary ball mill[J]. Chemosphere, 2017, 166: 275-280. |
2 | 江罗, 陈标华, 张吉瑞, 等 . 活性炭孔径分布对乙炔氢氯化低固汞催化剂性能的影响[J]. 化工学报, 2018, 69(1): 423-428. |
JIANG Luo , CHEN Biaohua , ZHANG Jirui , et al . Effect of activated carbon pore size distribution on low-mercury catalyst performance for acetylene hydrochlorination[J]. CIESC Journal, 2018, 69(1): 423-428. | |
3 | 白慧芳, 王娇娇 . 乙炔氢氯化反应无汞催化剂研究进展[J]. 当代化工, 2018, 47(10): 2169-2172. |
BAI HuiFang , WANG Jiaojiao . Research progress of mercury-free catalysts for hydrochlorination of acetylene[J]. Contemporary Chemical Industry, 2018, 47(10): 2169-2172. | |
4 | 张一科, 贾则琨, 甄彬, 等 . 纽兰德催化剂催化乙炔二聚反应过程[J]. 化工学报, 2016, 67(1): 294-299. |
ZHANG Yike , JIA Zekun , ZHEN Bin , et al . Acetylene dimerization catalyzed by Nieuwland catalyst[J]. CIESC Journal, 2016, 67(1): 294-299. | |
5 | SCHOBERT H . Production of acetylene and acetylene-based chemicals from coal[J]. Chem. Rev., 2014, 114 (3): 1743-1760. |
6 | RODYGIN K S , WERNER G , KUCHEROV F , et al . Calcium carbide: a unique reagent for organic synthesis and nanotechnology[J]. Chemistry: An Asian J., 2016, 11(7): 965-976. |
7 | 江玉波, 梁雪秋 . 碳化钙在有机合成中的应用进展[J]. 化学试剂, 2012, 34(10) :910-912. |
JIANG Yubo , LIANG Xueqiu . Progress in organic synthesis of calcium carbide[J]. Chemical Reagents, 2012, 34(10): 910-912. | |
8 | 刘青, 刘清雅, 王仁醒, 等 . 电石与醇的反应行为[J]. 化工学报, 2013, 64(7): 2573-2579. |
LIU Qing , LIU Qingya , WANG Renxing , et al . Reaction behavior of calcium carbide with alcohols[J]. CIESC Journal, 2013, 64(7): 2573-2579. | |
9 | NOPPARAT T , MONGKOL S , SUMTIT W . Direct synthesis of poly (p-phenyleneethynylene)s from calcium carbide[J]. Poly. Chem., 2014, 5(1): 48-52. |
10 | LIN Z W , YU D Y , SUM Y, et al . Synthesis of functional acetylene derivatives from calcium carbide[J]. ChemSusChem, 2014, 5(4): 625-628. |
11 | TEONG S P , DENG S , LI X K , et al . Direct vinylation of natural alcohol and derivatives with calcium carbide[J]. Green Chem., 2017, 19(7): 1659-1662. |
12 | EAKKAPHON R , TIRAYUT V , MONGKOL S , et al . An atom-economic approach for vinylation of indoles and phenols using calcium carbide as acetylene surrogate[J]. Europ. J. Org. Chem., 2016, 25: 4347-4353. |
13 | RYOSUKE M , YUSUKE A , MATSUBARA H . Synthesis of vinyl ethers of alcohols using calcium carbide under superbasic catalytic conditions (KOH/DMSO)[J]. Green Chem., 2016, 18(9): 2614-2618. |
14 | RODYGIN K S , ANANIKOV V P . An efficient metal-free pathway to vinyl thioesters with calcium carbide as the acetylene source[J]. Green Chem., 2016, 18(2): 482-486. |
15 | ZHANG W , WU H , LIU Z , et al . The use of calcium carbide in one-pot synthesis of symmetric diaryl ethynes[J]. Chem. Commun., 2006, 38(46): 4826-4828. |
16 | CHUENTRAGOOL P , VONGNAM K , RASHATASAKHON P , et al . Calcium carbide as a cost-effective starting material for symmetrical diarylethynes via Pd-catalyzed coupling reaction[J]. Tetrahedron, 2011, 67: 8177-8182. |
17 | KAEWCHANGWAT N , SUKATO R , VCHIRAWONGKWIN V , et al . Direct synthesis of aryl substituted pyrroles from calcium carbide: an underestimated chemical feedstock[J]. Cheminform, 2014, 17(1):460-465. |
18 | HU D , WANG F , WANG J D . Bi/AC modified with phosphoric acid as catalyst in the hydrochlorination of acetylene[J]. RSC Adv., 2017, 7(13): 7567-7575. |
19 | ZHAO J , ZHANG T T , DI X X , et al . Nitrogen-modified activated carbon supported bimetallic gold-cesium(Ⅰ) as highly active and stable catalyst for the hydrochlorination of acetylene[J]. RSC Adv., 2015, 5 (5): 6925-6931. |
20 | SUM Y N, YU D Y , ZHANG Y . Synthesis of acetylenic alcohols with calcium carbide as the acetylene source[J]. Green Chem., 2013, 15(10):2718-2721. |
21 | LI A , SONG H , XU X , et al . Greener production process of acetylene and calcium diglyceroxide via mechanochemical reaction of CaC2 and glycerol[J]. ACS Sustain. Chem. Eng., 2018, 6(8): 9560-9565. |
22 | ZHANG K , TAO S , XU X , et al . Preparation of mesoporous carbon materials through mechanochemical reaction of calcium carbide and transition metal chlorides[J]. Ind. Eng. Chem. Res., 2018, 57(18): 6180-6188. |
23 | LI Y , LIU Q , LI W , et al . Synthesis and supercapacitor application of alkynyl carbon materials derived from CaC2 and polyhalogenated hydrocarbons by interfacial mechanochemical reactions[J]. ACS Appl. Mater. Interfaces, 2017, 9(4): 3895-3901. |
24 | LIU Q , CHENG L , XU X , et al . Greatly enhanced reactivity of CaC2 with perchloro-hydrocarbons in a stirring ball mill for the manufacture of alkynyl carbon materials[J]. Chem. Eng. Process-Process Intensification, 2018, 124: 261-268. |
25 | LI W , LI Y , LIU Q , et al . Adsorptive desulfurization of diesel oil by alkynyl carbon materials derived from calcium carbide and polyhalohydrocarbons[J]. Energy Fuels, 2017, 31(9): 9035-9042. |
26 | DAI C , WANG X , WANG Y , et al . Synthesis of nanostructured carbon by chlorination of calcium carbide at moderate temperatures and its performance evaluation[J]. Mater. Chem. Phys., 2008, 112(2): 461-465. |
27 | LI Q , LI Y , CHEN Y , et al . Synthesis of g-graphyne by mechanochemistry and its electronic structure[J]. Carbon, 2018, 136:248-254. |
28 | LI Y J , MENG H , LU Y Z , et al . Efficient catalysis of calcium carbide for the synthesis of isophorone from acetone[J]. Ind. Eng. Chem. Res., 2016, 55 (18): 5257-5262. |
29 | GOSCINIAK D J . Ultraviolet radiation absorbing compositions of 1-cyclohexenylacetonitrile derivatives of aldehydes: US4935533[P].1990-06-19. |
30 | ZHANG W . Synthesis of 1-cyclohexenyl acetonitrile by heating reaction liquid of cyclohexanone, cyanoacetate, ammonium acetate, and n-hexane, carrying out dehydration reaction and carrying out decarboxylation reaction: CN104262197-A[P]. 2015-0107. |
31 | FRANKLIN S . The enamine as a cyclohexylidene source[J]. J. Org. Chem., 1973, 38 (2): 399-401. |
32 | KOZLOV N S , KOZINTSEV S I , KACHEROVSK F B . Production of cyclohexenyl acetonitrile by reacting cyclohexanone with excess of acetonitrile in presence of potassium or caesium hydroxide SU1498756-A[P]. 1987-07-06. |
33 | ZHANG W . Making 1-cyclohexenyl acetic acid by adding cyclohexanone and acetonitrile to vessel containing sodium-sodium hydroxide/gamma-alumina solid mixture, reacting, adding 1-cyclohexenyl acetonitrile to acid and liquid water and hydrolyzing: CN105152902-A[P]. 2015-12-06. |
34 | FOSTER R , HAMMICK D L L , WARDLEY A A . Interaction of polynitro-compounds with aromatic hydrocarbons and bases. Part XI. A new method for determining the association constants for certain interactions between nitro-compounds and bases in solution[J]. J. Chem. Soc., 1953: 3817-3820. |
35 | MEILLE V , SCHULZ E , VRINAT M , et al . A new route towards deep desulfurization: selective charge transfer complex formation[J]. Chem. Commun., 1998(3): 305-306. |
36 | XU X , MENG H , LU Y , et al . Aldol condensation of refluxing acetone on CaC2 achieves efficient production of diacetone-alcohol, mesityl oxide and isophorone[J]. RSC Adv., 2018, 8:30610-30615.. |
37 | LEDOVSKAYA M , RODYGIN K , ANANIKOV V . Calcium-mediated one-pot preparation of isoxazoles with deuterium incorporation[J]. Org. Chem. Front., 2018, 5: 226-231. |
38 | ABOLFAZL H , DANIEL S , ANDREAS M , et al . Fluoride-assisted activation of calcium carbide: a simple method for the ethynylation of aldehydes and ketones[J]. Org. Lett., 2015, 17: 2808-2811. |
[1] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[4] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[5] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[6] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[7] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[8] | LYU Chengyuan, ZHANG Han, YANG Mingwang, DU Jianjun, FAN Jiangli. Recent advances of dioxetane-based afterglow system for bio-imaging [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4108-4122. |
[9] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[10] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[11] | CHEN Sen, YIN Pengyuan, YANG Zhenglu, MO Yiming, CUI Xili, SUO Xian, XING Huabin. Advances in the intelligent synthesis of functional solid materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3340-3348. |
[12] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[13] | WANG Shuaiqi, WANG Congxin, WANG Xuelin, TIAN Zhijian. Solvent-free rapid synthesis of ZSM-12 zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3561-3571. |
[14] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[15] | YU Xixi, ZHANG Jinshuai, LEI Wen, LIU Chengguo. Research progress of self-healing photocuring polymeric materials based on dynamic covalent bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3589-3599. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1070
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 420
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |