Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (07): 3163-3169.DOI: 10.16085/j.issn.1000-6613.2018-1833
• Industrial catalysis • Previous Articles Next Articles
Qi WANG1,Ming KE1(),Pei YU2,Yang LIU1,Lei ZHANG1,Chengjie XIA1,Wen LIU1
Received:
2018-09-11
Online:
2019-07-05
Published:
2019-07-05
Contact:
Ming KE
王奇1,柯明1(),于沛2,刘洋1,张蕾1,夏成杰1,刘稳1
通讯作者:
柯明
作者简介:
王奇(1992—),男,硕士研究生,研究方向为清洁油品的生产。
基金资助:
CLC Number:
Qi WANG, Ming KE, Pei YU, Yang LIU, Lei ZHANG, Chengjie XIA, Wen LIU. Effect of impregnation way of Ce on the performance of CoMo/CeAl2O3 catalysys in hydrodesulfurization[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3163-3169.
王奇, 柯明, 于沛, 刘洋, 张蕾, 夏成杰, 刘稳. Ce浸渍方式对CoMo/CeAl2O3催化剂反应性能影响[J]. 化工进展, 2019, 38(07): 3163-3169.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1833
催化剂 | 比表面积/m2·g-1 | 孔径/nm | 孔容/cm3·g-1 |
---|---|---|---|
CoMo/CeAl2O3 | 259.40 | 7.83 | 0.49 |
CeCoMo/Al2O3 | 244.70 | 7.58 | 0.48 |
CoMoCe/Al2O3 | 250.81 | 7.59 | 0.48 |
催化剂 | 比表面积/m2·g-1 | 孔径/nm | 孔容/cm3·g-1 |
---|---|---|---|
CoMo/CeAl2O3 | 259.40 | 7.83 | 0.49 |
CeCoMo/Al2O3 | 244.70 | 7.58 | 0.48 |
CoMoCe/Al2O3 | 250.81 | 7.59 | 0.48 |
催化剂 | L酸量/μmol·g-1 | 酸量/μmol·g-1 | 酸分布/% | |||
---|---|---|---|---|---|---|
200℃ | 350℃ | Lw | Ls | Lw | Ls | |
CoMo/CeAl2O3 | 47.26 | 21.25 | 26.01 | 21.25 | 55.04 | 44.96 |
CoMoCe/Al2O3 | 66.42 | 32.88 | 33.54 | 32.88 | 50.50 | 49.50 |
CeCoMo/Al2O3 | 61.61 | 28.42 | 33.19 | 28.42 | 53.87 | 46.13 |
催化剂 | L酸量/μmol·g-1 | 酸量/μmol·g-1 | 酸分布/% | |||
---|---|---|---|---|---|---|
200℃ | 350℃ | Lw | Ls | Lw | Ls | |
CoMo/CeAl2O3 | 47.26 | 21.25 | 26.01 | 21.25 | 55.04 | 44.96 |
CoMoCe/Al2O3 | 66.42 | 32.88 | 33.54 | 32.88 | 50.50 | 49.50 |
CeCoMo/Al2O3 | 61.61 | 28.42 | 33.19 | 28.42 | 53.87 | 46.13 |
催化剂 | 电子结合能/eV | Mo的 硫化度/% | ||
---|---|---|---|---|
Mo4+ 3d5/2 | Mo5+ 3d5/2 | Mo6+ 3d5/2 | ||
CoMo/CeAl2O3 | 228.81 | 229.84 | 232.61 | 49.21 |
CoMoCe/Al2O3 | 229.10 | 229.91 | 232.53 | 58.22 |
CeCoMo/Al2O3 | 228.83 | 229.92 | 232.82 | 55.80 |
催化剂 | 电子结合能/eV | Mo的 硫化度/% | ||
---|---|---|---|---|
Mo4+ 3d5/2 | Mo5+ 3d5/2 | Mo6+ 3d5/2 | ||
CoMo/CeAl2O3 | 228.81 | 229.84 | 232.61 | 49.21 |
CoMoCe/Al2O3 | 229.10 | 229.91 | 232.53 | 58.22 |
CeCoMo/Al2O3 | 228.83 | 229.92 | 232.82 | 55.80 |
催化剂 | CoMoS | Co9S8 | Co(Ⅱ) | |||
---|---|---|---|---|---|---|
结合能/eV | 相含量 /% | 结合能/eV | 相含量/% | 结合能/eV | 相含量 /% | |
CoMo/CeAl2O3 | 778.94 | 39.10 | 778.84 | 2.70 | 781.45 | 58.20 |
CoMoCe/Al2O3 | 779.07 | 49.39 | 777.81 | 2.20 | 781.80 | 48.41 |
CeCoMo/Al2O3 | 779.12 | 46.23 | 777.74 | 2.01 | 779.26 | 51.76 |
催化剂 | CoMoS | Co9S8 | Co(Ⅱ) | |||
---|---|---|---|---|---|---|
结合能/eV | 相含量 /% | 结合能/eV | 相含量/% | 结合能/eV | 相含量 /% | |
CoMo/CeAl2O3 | 778.94 | 39.10 | 778.84 | 2.70 | 781.45 | 58.20 |
CoMoCe/Al2O3 | 779.07 | 49.39 | 777.81 | 2.20 | 781.80 | 48.41 |
CeCoMo/Al2O3 | 779.12 | 46.23 | 777.74 | 2.01 | 779.26 | 51.76 |
催化剂 | 平均层数 | 平均长度/nm |
---|---|---|
CoMo/CeAl2O3 | 2.79 | 3.82 |
CeCoMo/Al2O3 | 2.97 | 3.80 |
CoMoCe/Al2O3 | 3.12 | 3.81 |
催化剂 | 平均层数 | 平均长度/nm |
---|---|---|
CoMo/CeAl2O3 | 2.79 | 3.82 |
CeCoMo/Al2O3 | 2.97 | 3.80 |
CoMoCe/Al2O3 | 3.12 | 3.81 |
催化剂 | W(硫) /μg.g-1 | W(硫醇硫) /μg.g-1 | ΔRON |
---|---|---|---|
CoMo/CeAl2O3 | 12.8 | 5.5 | -1.0 |
CoMoCe/Al2O3 | 8.6 | 3.5 | -1.3 |
CeCoMo/Al2O3 | 11.1 | 4.7 | -1.2 |
催化剂 | W(硫) /μg.g-1 | W(硫醇硫) /μg.g-1 | ΔRON |
---|---|---|---|
CoMo/CeAl2O3 | 12.8 | 5.5 | -1.0 |
CoMoCe/Al2O3 | 8.6 | 3.5 | -1.3 |
CeCoMo/Al2O3 | 11.1 | 4.7 | -1.2 |
1 | SONGC. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catalysis Today, 2003, 86(1):211-263. |
2 | BABICHI V, MOULIJNJ. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review[J]. Fuel, 2003, 82(6):607-631. |
3 | HUANGR J, ZHANGY, BOZZETTIC, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521):218-222. |
4 | MCDONALDB C, DE J G, GILMANJ B, et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions[J]. Science, 2018, 359(6377):760-764. |
5 | 于沛, 柯明, 李建鹏,等. La对CoMo/γ-Al2O3催化剂选择性加氢脱硫性能的影响[J]. 石油炼制与化工, 2016, 47(8):13-19. |
YUPei, KEMing, LIJianpeng, et al. Effect of La on selective hydrodesulfurization performance of CoMo/γ -Al2O3 catalysts[J]. Petroleum Processing and Petrochemicals, 2016, 47(8):13-19. | |
6 | 胡乃方, 崔海涛, 邱泽刚,等. 不同P负载量对Co-Mo/γ-Al2O3煤焦油加氢脱硫性能影响的研究[J]. 燃料化学学报, 2016, 44(6):745-753. |
HUNaifang, CUIHaitao, QIUZegang, et al. Effect of different P loads on hydrodesulfurization performance of Co-Mo/γ -Al2O3 coal tar catalysts[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6):745-753. | |
7 | SCHEFFERB, DEKKERN J J, MANGNUSP J, et al. A temperature-programmed reduction study of sulfided Co-Mo/Al2O3, hydrodesulfurization catalysts[J]. Journal of Catalysis, 1990, 121(1):31-46. |
8 | YUP, KEM, LIUQ, et al. Enhancement of the selective hydrodesulfurization performance by adding cerium to CoMo/γ-Al2O3 catalysts[J]. RSC Advances, 2016, 6(99):96662-96668. |
9 | 申志兵, 柯明, 张君涛,等. 活性金属不同浸渍顺序对Mo-Ni/Al2O3催化剂硫醚化反应性能的影响[J]. 燃料化学学报, 2017(5):616-623. |
SHENZhibing, KEMing, ZHANGJuntao, et al. Effect of different impregnation sequences of active metals on the thioetherification performance of Mo-Ni/Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2017(5):616-623. | |
10 | FANY, LUJ, SHIG, et al. Effect of synergism between potassium and phosphorus on selective hydrodesulfurization performance of CoMo/Al2O3 FCC gasoline hydro-upgrading catalyst[J]. Catalysis Today, 2007, 125(3):220-228. |
11 | 张孔远, 刘爱华, 燕京,等. 不同方法制备的CoMo/Al2O3加氢脱硫催化剂的表征[J]. 催化学报, 2005, 26(8):639-644. |
ZHANGKongyuan, LIUAihua, YANJing, et al. Characterization of CoMo/Al2O3 hydrodesulfurization catalysts prepared by different methods[J]. Chinese Journal of Catalysis, 2005, 26(8):639-644. | |
12 | HENKERM, WENDLANDTK P, VALYONJ, et al. Structure of MoO3 /Al2O3 -SiO2, catalysts[J]. Applied Catalysis, 2015, 69(1):205-220. |
13 | RAJAGOPALS, MARINIH J, MARZARIJ A, et al. Silica-alumina-supported acidic molybdenum catalysts-TPR and XRD characterization[J]. Journal of Catalysis, 1994, 147(2): 417-428. |
14 | LAURITSENJ V, KIBSGAARDJ, OLESENG H, et al. Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts[J]. Journal of Catalysis, 2007, 249(2): 220-233. |
15 | YOOSUKB, KIM J H, SONGC, et al. Highly active MoS2, CoMoS2 and NiMoS2 unsupported catalysts prepared by hydrothermal synthesis for hydrodesulfurization of 4,6-dimethyl-dibenzothiophene[J]. Catalysis Today, 2008, 130(1): 14-23. |
16 | JACOBSENC J H, TORNQVISTE, TOPSØEH. HDS, HDN and HYD activities and temperature-programmed reduction of unsupported transition metal sulfides[J]. Catalysis Letters, 1999, 63(3): 179-183. |
17 | EMEISC A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. Journal of Catalysis, 1993, 141(2): 347-354. |
18 | 朱玉霞, 林伟, 田辉平, 等. 固体酸催化剂酸性分析方法的研究进展[J]. 石油化工, 2006, 35(7): 607-614. |
ZHUYuxia, LINWei, TIANHuiping, et al. Research progress on acid analysis methods of solid acid catalysts[J]. Petrochemical Technology, 2006, 35(7): 607-614. | |
19 | MASSOTHF E, MURALIDHARG, SHABTAIJ. Catalytic functionalities of supported sulfides: Ⅱ. Effect of support on Mo dispersion[J]. Journal of Catalysis, 1984, 85(1): 53-62. |
20 | RAYBAUDP, HAFNERJ, KRESSEG, et al. Structural and electronic properties of the MoS2 edge-surface[J]. Surface Science, 1998, 407(1/2/3): 237-250. |
21 | TOPSØEN, TOPSØEH, MASSOTHF E. Evidence of Brønsted acidity on sulfided promoted and unpromoted Mo/Al2O3 catalysts[J]. Journal of Catalysis, 1989, 119(1): 252-255. |
22 | PAULJ, CRISTOLS, PAYENE. Computational studies of (mixed) sulfide hydrotreating catalysts[J]. Catalysis Today, 2008, 130(1): 139-148. |
23 | ANGEL GDEL, GUZMÁNC, BONILLAA, et al. Lanthanum effect on the textural and structural properties of γ-Al2O3 obtained from boehmite[J]. Materials Letters, 2005, 59(4): 499-502. |
24 | 秦鸣霞, 俞斌, 杨婧,等. 金属改性对Co-Mo/γ-Al2O3加氢脱硫催化剂选择性的影响[J]. 工业催化, 2009, 17(5):45-49. |
QINMingxia, YUBin, YANGJing, et al. Effect of metal modification on selectivity of Co-Mo/γ-Al2O3 hydrodesulfurization catalysts[J]. Industrial Catalysis, 2009, 17(5):45-49. | |
25 | 温广明, 王文寿, 陈黎行,等. ZnO/θ-Al2O3催化剂上全馏分FCC汽油的选择性加氢脱硫[J]. 催化学报, 2007, 28(9):823-828. |
WENGuangming, WANGWenshou, CHENLixing, et al. Selective hydrodesulfurization of full fraction FCC gasoline over ZnO/θ-Al2O3 catalyst[J]. Chinese Journal of Catalysis, 2007, 28(9):823-828. | |
26 | 温广明. 全馏分FCC汽油选择性加氢脱硫催化剂的研究[D]. 大连: 大连理工大学, 2007. |
WENGuangming. Study on selective hydrodesulfurization catalyst for full fraction FCC gasoline[D]. Dalian: Dalian University of Technology, 2007. | |
27 | HUOQ, DOUT, ZHAOZ, et al. Synthesis and application of a novel mesoporous zeolite L in the catalyst for the HDS of FCC gasoline[J]. Applied Catalysis A: General, 2010, 381(1/2): 1-8. |
28 | EMEISC A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. Journal of Catalysis, 1993, 141(2): 347-354. |
29 | NINHT K T, MASSINL, LAURENTID, et al. A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts[J]. Applied Catalysis A: General, 2011, 407(1/2): 29-39. |
30 | LIH, LIM, NIEH. Tailoring the surface characteristic of alumina for preparation of highly active NiMo/Al2O3 hydrodesulfurization catalyst[J]. Microporous and Mesoporous Materials, 2014, 188(4): 30-36. |
31 | LIUB, CHAIY, LIY, et al. Effect of sulfidation atmosphere on the performance of the CoMo/γ-Al2O3 catalysts in hydrodesulfurization of FCC gasoline[J]. Applied Catalysis A: General, 2014, 471: 70-79. |
32 | GANDUBERTA D, KREBSE, LEGENSC, et al. Optimal promoter edge decoration of CoMoS catalysts: a combined theoretical and experimental study[J]. Catalysis Today, 2008, 130(1): 149-159. |
33 | BUI V N, LAURENTID, DELICHÈREP, et al. Hydrodeoxygenation of guaiacol Part II: Support effect for CoMoS catalysts on HDO activity and selectivity[J]. Applied Catalysis B: Environmental, 2011, 1(3/4): 246-255. |
34 | 孙淑玲, 石亚华, 徐广通, 等. Co-Mo加氢脱硫催化剂的TEM表征[J]. 石油炼制与化工, 2006, 37(11):1-6. |
SUNShuling, SHIYahua, XUGuangtong, et al. TEM characterization of Co-Mo hydrodesulfurization catalysts[J]. Petroleum Processing and Petrochemicals, 2006, 37(11): 1-6. |
[1] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[2] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[3] | YU Shan, DUAN Yuangang, ZHANG Yixin, TANG Chun, FU Mengyao, HUANG Jinyuan, ZHOU Ying. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790. |
[4] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[5] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
[6] | HOU Limin, XU Jie, FU Shancong, WU Wenfei. Effect of Cu modification on NH3-SCR denitration of rare earth tailings catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 765-773. |
[7] | LI Naizhen, SUN Ruijie, QIN Zhifeng, MIAO Maoqian, WU Qiongxiao, CHANG Liping, SUN Pengcheng, ZENG Jian, LIU Yi. Effects of constant carbon atmosphere on the activity, selectivity and coking of catalysts in hydrodesulfurization of coke oven gas [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 783-793. |
[8] | YIN Keke, WANG Yugao, GU Bao, SHEN Jun. Direction esterification of bio-based succinate catalyzed by solid super acid SO42-/ZrO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5213-5222. |
[9] | ZHANG Qi, WANG Tao, ZHANG Xuebing, MENG Xiangkun, LYU Yijun, MEN Zhuowu. Effects of reduction conditions on fused iron catalyst for high temperature Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 239-246. |
[10] | ZENG Junjian, ZHAO Jigang. Research progress of gold based mercury-free catalysts for acetylene hydrochlorination [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3589-3596. |
[11] | SUN Zhenzhen, LIU Huazhang, YE Pan, HAN Wenfeng. Optimization of promoters for Fe1-x O-based ammonia synthesis catalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1886-1893. |
[12] | GAO Bo, FENG Xudong, LI Chun. Visual and high-throughput method for detecting the activity of aspartate transcarbamylase [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2054-2059. |
[13] | MA Xingxing, FENG Yakai. Improvement of thermal oxygen aging resistance of silicon gel by adding modified cerium oxide with coupling agent [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 874-880. |
[14] | ZHANG Shan, LIU Huazhang. Rod La x Ce1-x O y supported Ru catalyst for hydrogen production by ammonia decomposition [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6350-6357. |
[15] | CHANG Tian, WANG Yu, ZHAO Zuotong, HU Jinchao, SHEN Zhenxing. Optimization of catalytic oxidation of trichloroethylene over Mn-Ce/HZSM-5 using response surface methodology [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5830-5842. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |