[1] ZHAO H B,HOLLADAY J E,BROWN H,et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science,2007(316):1597-1600.
[2] OMARI K W B. Producing renewable chemicals from fishery waste:chitin,chitosan and the monomers[J]. Memorial University of Newfoundland,2012.
[3] 李艳,魏作君,陈传杰,等. 碳水化合物降解为5-羟甲基糠醛的研究[J]. 化学进展,2010,22(8):1603-1609. LI Y, WEI Z J, CHEN C J, et al. Preparation of 5-hydroxymethylfurfural by dehydration of carbohydrates[J]. Progress in Chemistry,2010,22(8):1603-1609.
[4] 王爱琴. 甲壳素化学[M]. 北京:科学出版社,2008:9. WANG A Q. Chitin chemistry[M]. Beijing:Science Press,2008:9.
[5] YAN N,CHEN X. Don't waste seafood waste[J]. Nature,2015, 524:155-157.
[6] CHEN X, YANG H, YAN N. Shell biorefinery:dream or reality?[J]. Chemistry:A European Journal,2016(22):1-21.
[7] CHEN X,ZHANG B,YAN N,et al. Valorization of renewable carbon resources for chemicals.[J]. Chimia International Journal for Chemistry,2015,69(3):120-124.
[8] CHEN X,YAN N. Novel catalytic systems to convert chitin and lignin into valuable chemicals[J]. Catalysis Surveys from Asia, 2014,18(4):164-176.
[9] FRANICH R A,GOODIN S J,ANAL J. Acetamidofurans, acetamidopyrones and acetamidoacetaldehyde from pyrolysis of chitin and n-acetylglucosamine[J]. Appl. Pyrolysis,1984,7(1/2):91-100.
[10] DROVER M W,OMARI K W,MURPHY J N,et al. Formation of a renewable amide, 3-acetamido-5-acetylfuran, via direct conversion of N-acetyl-D-glucosamine[J]. RSC Adv.,2012(2):4642-4644.
[11] OMARI K W,DODOT L,KERTON F M. A simple one-pot dehydration process to convert N-acetyl-D-glucosamine into a nitrogen-containing compound,3-acetamido-5-acetylfuran[J]. ChemSusChem,2012(5):1767-1772.
[12] CHEN X,CHEW S L,KERTON F M, et al. Direct conversion of chitin into a N-containing furan derivative[J]. Green Chem.,2014, (16):2204-2212.
[13] CHEN X,GAO Y J,WANG L,et al. Effect of treatment methods on chitin structure and its transformation into nitrogen-containing chemicals[J]. ChemPlusChem,2015(80):1565-1572.
[14] CHEN X,LIU Y,KERTON F M,et al. Conversion of chitin and N-acetyl-D-glucosamine into a N-containing furan derivative in ionic liquids[J]. RSC Adv.,2015(5):20073-20080.
[15] VERONICA E,MERCEDES V,CARLOS M J. Recent advances in the synthesis of pyrroles by multicomponent reactions.[J]. Chemical Society Reviews,2014,43(13):4633-4657.
[16] ZENG L,QIN C,WANG L,et al. Volatile compounds formed from the pyrolysis of chitosan[J]. Carbohydrate Polymers,2011,83(4):1553-1557.
[17] GAO X,CHEN X,YAN N,et al. Transformation of chitin and waste shrimp shells into acetic acid and pyrrole[J]. Acs Sustainable Chemistry & Engineering,2016(4):3912-3920.
[18] SASHIWA H,SHIGEMASA Y. Chemical modification of chitin and chitosan:preparation and water soluble property of N-acylated or N-alkylated partially deacetylated chitins[J]. Carbohydrate Polymers,1999,39(2):127-138.
[19] EINBU A,VARUM K M. Characterization of chitin and its hydrolysis to GlcNAc and GlcN[J]. Biomacromolecules,2008,9(7):1870-1875.
[20] VAAJE K G,EIJSINK V G H. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides[J]. Science, 2010,330(6001):219-222.
[21] CHEN J,WANG A M,HO C T. Volatile compounds generated from thermal degradation of N-acetylglucosamine[J]. Journal of Agricultural & Food Chemistry,1998,46(8):3207-3209.
[22] OHMI Y,NISHIMURA S,KOHKI E. Synthesis of α-amino acids from Glucosamine-HCl and its derivatives by aerobic oxidation in water catalyzed by Au nanoparticles on basic supports[J]. Chemsuschem,2013,6(12):2259-2262.
[23] PIERSON Y,CHEN X,BOBBINK F D,et al. Acid-catalyzed chitin liquefaction in ethylene glycol[J]. Acs Sustainable Chemistry & Engineering,2014,2(8):2081-2089.
[24] MASCAL M, NIKITIN E B. Dramatic advancements in the saccharide to 5-(chloromethyl) furfural conversion reaction[J]. ChemSusChem,2009,2(9):859-861.
[25] LEE S B, JEONG G T. Catalytic conversion of chitosan to 5-hydroxymethylfurfural under low temperature hydrothermal process[J]. Appl. Biochem. Biotechnol.,2015(176):1151-1161.
[26] SAVITRI E, JULIASTUTI S R, HANDARATRI A, et al. Degradation of chitosan by sonication in very-low-concentration acetic acid[J]. Polymer Degradation and Stability,2014(110):344-352.
[27] SAVITRI E, ROESYADI A. Degradation of chitosan by hydrothermal process in the presence of sonication pre-treatment with supercritical CO2 as pressurized fluid[J]. Macromol. Symp.,2015(353):212-219.
[28] OMARI K W,BESAW J E,KERTON F M. Hydrolysis of chitosan to yield levulinic acid and 5-hydroxymethylfurfural in water under microwave irradiation[J]. Green Chemistry,2012(14):1480-1487.
[29] DENG T S,CUI X J,QI Y Q,et al. Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by ZnCl2 in water[J]. Chem. Commun.,2012,48(44):5494-5496.
[30] WANG Y X,PEDERSON C M,DENG T S. Direct conversion of chitin biomass to 5-hydroxymethylfurfural in concentrated ZnCl2 aqueous solution[J]. Bioresource Technology,2013, 143:384-390.
[31] 蒋平平,李晓婷,冷炎,等. 离子液体制备及其化工应用进展[J]. 化工进展,2014,33(11):2815-2828. JIANG P P,LI X T,LENG Y,et al. Preparation and chemical application of ionic liquids[J]. Chemical Industry and Engineering Progress,2014,33(11):2815-2828.
[32] 韩金玉,黄鑫,王华,等. 绿色溶剂离子液体的性质和应用研究进展[J]. 化学工业与工程,2005,22(1):62-66. HAN J Y,HUANG X,WANG H,et al. Progress in characteristic and application of ionic liquid as green solvent[J]. Chemcial Industry and Engineering,2005,22(1):62-66.
[33] QU Y S,WEI Q Y,LI H Q,et al. Microwave-assisted conversion of microcrystalline cellulose to 5-hydroxymethylfurfural catalyzed by ionic liquids[J]. Bioresource Technology,2014,162(6):358-364.
[34] XIONG Y,ZHANG Z H,WANG X,et al. Hydrolysis of cellulose in ionic liquids catalyzed by a magnetically-recoverable solid acid catalyst[J]. Chemical Engineering Journal, 2014, 235(1):349-355.
[35] 周理龙,吴廷华,吴瑛. 纤维素在离子液体中的降解转化[J]. 化学进展,2012,24(8):1533-1543. ZHOU L L,WU T H,WU Y. Degradation and conversion of cellulose in ionic liquids[J]. Progress in Chemistry,2012,24(8):1533-1543.
[36] JOSHI S S,PANDARE K V,BHONGALE P. Application of ionic liquids as catalysts in the synthesis of HMF from chitosan[C]. International Conference on Sustainable Chemistry & Engineering, Hotel Lalit,Mumbai,2015.
[37] FENG J X,ZANG H J,YAN Q,et al. Conversion of chitosan into 5-hydroxymethylfurfural via hydrothermal synthesis[J]. Advanced Materials Research,2015(10):411-414.
[38] LI M G,ZANG H J,FENG J X,et al. Efficient conversion of chitosan into 5-hydroxymethylfurfural via hydrothermal synthesis in ionic liquids aqueous solution[J]. Polymer Degradation and Stability,2015(121):331-339.
[39] 安士云,金林红,胡德禹,等. 固体酸催化单糖制备5-羟甲基糠醛(5-HMF)的研究进展[J]. 化学世界,2012,53(7):441-445. AN S Y,JIN L H,HU D Y,et al. Advances in conversion of monosaccharide into 5-HMF catalyzed by solid acid[J]. Chemical World,2012,53(7):441-445.
[40] 范红显,孙晓凤,贾霏,等. 固体超强酸催化剂在生物质降解中的研究进展[J]. 精细与专用化学品,2013,21(6):46-50. FAN H X, SUN X F, JIA F, et al. Advances in biomass degradation catalyzed by solid super acid[J]. Fine and Specialty Chemicals,2013,21(6):46-50.
[41] 杨柳,刘玉环,阮榕生,等. 固体酸催化淀粉制备5-羟甲基糠醛研究进展[J]. 现代化工,2011,31(1):32-36. YANG L,LIU Y H,RUAN R S,et al. Advances in production of 5-HMF from starch[J]. Modern Chemical Industry,2011,31(1):32-36.
[42] 张建明,翟尚儒,黄德智,等. 固体杂多酸在生物质水解转化中的应用研究[J]. 化学进展,2012,24(2/3):433-444. ZHANG J M, ZHAI S R, HUANG D Z, et al. Solid heteropolyacids (HPAs)in hydrolytic conversion of biomass[J]. Progress in Chemistry,2012,24(2/3):433-444.
[43] 常春,马晓建,岑沛霖. 新型绿色平台化合物乙酰丙酸的生产及应用研究进展[J]. 化工进展,2005,24(3):350-356. CHANG C,MA X J,CHEN P L. Advances in production and application of levulinic acid:new type green platform chemical[J]. Chemical Industry and Engineering Progress,2005,24(3):350-356.
[44] 蔡磊,吕秀阳,何龙,等. 新平台化合物乙酰丙酸化学与应用[J]. 化工时刊,2004,18(7):1-4. CAI L,LV X Y,HE L,et al. The development of chemistry and applications of levulinic acid——a new platform chemical[J]. Chemical Industry Times,2004,18(7):1-4.
[45] 王义刚,聂小安,刘振兴. 乙酰丙酸的制备及其应用前景分析[J]. 生物质化学工程,2013,47(5):45-50. WANG Y G,NIE X A,LIU Z X. Preparation of levulinic acid and analysis of its application prospect[J]. Biomass Chemical Engineering,2013,47(5):45-50.
[46] 周帅. 生物质平台化合物乙酰丙酸的制备与应用研究[D]. 北京:北京林业大学,2013. ZHOU S. Research on preparation and application of levulinic acid——a new platform chemical from biomass[D]. Beijing:Beijing Forestry University,2013.
[47] REN H F,ZHOU Y G,LIU L. Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids[J]. Bioresource Technology,2013,129(2):616-619.
[48] RAMLI N A S,AMIN N A S. Catalytic hydrolysis of cellulose and oil palm biomass in ionic liquid to reducing sugar for levulinic acid production[J]. Fuel Processing Technology,2014(128):490-498.
[49] SHEN Y,SUN J K,YI Y X,et al. One-pot synthesis of levulinic acid from cellulose in ionic liquids[J]. Bioresource Technology, 2015,192:812-816.
[50] REN H,GIRISUTA B,ZHOU Y G,et al. Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid[J]. Carbohydrate Polymers,2015,117:569-576.
[51] SZABOLCS Á,MARK M,GABOR D,et al. Microwave-assisted conversion of carbohydrates to levulinic acid:an essential step in biomass conversion[J]. Green Chem.,2013,15(2):439-445.
[52] JEONG G T. Production of levulinic acid from glucosamine by dilute-acidcatalyzed hydrothermal process[J]. Industrial Crops and Products,2014(62):77-83.
[53] WAKATSUKI K. Acetyls Chain——World Market Overview[C]//Asia Petrochemical Industry Conference,Seoul,Korea,2015.
[54] CHEUNG H,TANKE R S,TORRENCE G P. Acetic acid[M]. Ullmann's Encyclopedia of Industrial Chemistry,2000:431-441.
[55] CALVO L,VALLEJO D. Formation of organic acids during the hydrolysis and oxidation of several wastes in sub- and supercritical water[J]. Ind. Eng. Chem. Res.,2002,41(25):6503-6509.
[56] JIN F,ZHOU Z,MORIYA T,et al. Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass[J]. Environ. Sci. Technol.,2005,39(6):1893-1902. |