[1] 邓双, 刘宇, 张辰, 等. 基于实测的燃煤电厂氟排放特征[J]. 环境科学研究, 2014, 27(3):225-231. DENG Shuang, LIU Yu, ZHANG Chen, et al. Fluorine emission of pulverized coal-fired power plants in China[J]. Research of Environmental Sciences, 2014, 27(3):225-231.
[2] 马双忱, 于伟静, 贾绍广, 等. 燃煤电厂脱硫废水处理技术研究与应用进展[J]. 化工进展, 2016, 35(1):255-262. MA Shuangchen, YU Weijing, JIA Shaoguang, et al. Research and application progresses of flue gas desulfurization (FGD) wastewater treatment technologies in coal-fired plants[J]. Chemical Industry and Engineering Progress, 2016, 35(1):255-262.
[3] 陈姝娟, 薛建明, 许月阳, 等. 燃煤电厂除尘设施对烟气中微量元素的减排特性分析[J]. 中国电机工程学报, 2015, 35(9):2224-2230. CHEN Sujuan, XUE Jianming, XU Yueyang, et al. Analysis on reduction of trace elements in flue gas by dust removing facilities in coal-fired power plants[J]. Proceedings of the Chinese Society of Electrical Engineering, 2015, 35(9):2224-2230.
[4] 郭东明. 脱硫工程技术与设备[M]. 北京:化学工业出版社, 2007. GUO Dongming. Desulfurization engineering technology and equipment[M]. Beijing:Chemical Industry Press, 2007.
[5] 田斌. 湿法脱硫技术问题及脱硫效率探讨[J]. 电力科技与环保, 2008, 24(5):35-37. TIAN Bin. Approach to desulfurization efficiency and technical problems of wet desulfurization[J]. Electric Power Environmental Protection, 2008, 24(5):35-37.
[6] 环境保护部. 火电厂污染防治可行技术指南[J]. 中国电业, 2017(14):4. Ministry of Environmental Protection. Thermal power plant pollution prevention and control of viable technical guidelines[J]. China Electric Power, 2017(14):4.
[7] 张宁, 郭德立. 硝酸银滴定法测定水中氯离子含量的方法[J]. 山东交通科技, 2016(6):93-94. ZHANG Ning, GUO Deli. Determination of chloride ion in water by silver nitrate titration[J]. Shandong Transportation Science and Technology, 2016(6):93-94.
[8] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002. State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Methods[M]. 4th ed. Beijing:China Environmental Science Press, 2002
[9] 佟琦, 高丽华. 莫尔法与自动电位滴定法测定水中氯离子含量的比较[J]. 工业水处理, 2008(11):69-71. TONG Qi, GAO Lihua. Determination of chloride ion in water by mole method and auto potential titration[J]. Industrial Water Treatment, 2008(11):69-71.
[10] 赵晶晶, 张海涛, 吴莉莉. 离子色谱法、电位滴定法和直接滴定法对循环水中氯离子的测定对比及应用[J]. 大氮肥, 2014, 37(3):205-207. ZHAO Jingjing, ZHANG Haitao, WU Lili. Comparison and application of ion chromatography potentiometric titration and direct titration in determination of chloride ion in circulating water[J]. Large Nitrogen Fertilizer, 2014, 37(3):205-207.
[11] WEISS J. Ion Chromatography[M]. 2nd ed. New York:VCH, 1995.
[12] CHOPPALA G, RAHMAN M M, CHEN Z L, et al. Simultaneous determination of chromium species by ion chromatography coupled with inductively coupled plasma mass spectrometry[C]//Proceedings of the 19th World Congress of Soil Science:Soil solutions for a changing world, Brisbane, Australia, 1-6 August 2010. Working Group 1.5 Soil sense:rapid soil measurements. 2010:114-116.
[13] SARZANINI C. Recent developments in ion chromatography.[J]. Journal of Chromatography A, 2002, 956(1/2):3-13.
[14] QIU H, JIANG S, LIU X. N-Methylimidazolium anion-exchange stationary phase for high-performance liquid chromatography[J]. Journal of Chromatography A, 2006, 1103(2):265-270.
[15] JEYAKUMAR S, RAUT V V, RAMAKUMAR K L. Simultaneous determination of trace amounts of borate, chloride and fluoride in nuclear fuels employing ion chromatography (IC) after their extraction by pyrohydrolysis[J]. Talanta, 2008, 76(5):1246-1251.
[16] BHATTACHARYYA L, ROHRER J S. Ion chromatography-Principles and applications[M]. New York:John Wiley & Sons, Inc., 2012:1-21.
[17] AROSIO P, JAQUET B, WU H, et al. On the role of salt type and concentration on the stability behavior of a monoclonal antibody solution.[J]. Biophysical Chemistry, 2012, 168/169(4):19.
[18] CHAKRABORTY J, SENGUPTA S, DASGUPTA S, et al. Determination of trace level carbonate ion in Mg-Al layered double hydroxide:its significance on the anion exchange behaviour[J]. Journal of Industrial & Engineering Chemistry, 2012, 18(6):2211-2216.
[19] JEYAKUMAR S, RAUT V V, RAMAKUMAR K L. Simultaneous determination of trace amounts of borate, chloride and fluoride in nuclear fuels employing ion chromatography (IC) after their extraction by pyrohydrolysis[J]. Talanta, 2008, 76(5):1246-1251.
[20] DRESSLER V L, POZEBON D, FLORES É L M, et al. Potentiometric determination of fluoride in geological and biological samples following pyrohydrolytic decomposition[J]. Analytica Chimica Acta, 2002, 466(1):117-123.
[21] OLIVEIRA E M, FINAZZI G A, CARLOS I A. Influence of glycerol, mannitol and sorbitol on electrodeposition of nickel from a Watts bath and on the nickel film morphology[J]. Surface & Coatings Technology, 2006, 200(20/21):5978-5985.
[22] MORALES J A, GRATEROL L S D, MESA J, et al. Determination of chloride, sulfate and nitrate in groundwater samples by ion chromatography[J]. Journal of Chromatography A, 2000, 884(1/2):185-190.
[23] KOIRTYOHANN S R, PICKETT E E. Spectral interferences in atomic absorption spectrometry.[J]. Analytical Chemistry, 2002, 38(4):585-587.
[24] DIMA G, POPESCU I V, STIHI C, et al. Fe, Mn and Zn concentrations determination from Ialomita River by atomic absorption spectroscopy[J]. Romanian Journal of Physics, 2006, 51(5/6):667-674.
[25] QINDEEL R, BOUSIAKOU L G, TAWFIK W, et al. Trace element analysis using ICP-MS in the shallow aquifers of the Haier Region, Saudi Arabia[J]. Middle East Journal of Scientific Research, 2015, 23(8):1941-1948.
[26] GARCIA R, BÁEZ A P. Atomic absorption spectrometry (AAS)[EB/OL].[2017-11-15]. http://cdn.intechopen.com/pdfs/26275.pdf.
[27] FATEMA K, NAHER K, CHOUDHURY T R, et al. Determination of toxic metal accumulation in shrimps by atomic absorption spectrometry (AAS)[J]. International Journal of Environmental Analytical Chemistry, 2015, 2(3):1000140.
[28] 杨延, 薛来, 刘永昌. 用原子吸收法间接测定电厂水中的痕量氯离子[J]. 上海电力学院学报, 2000, 16(1):8-12. YANG Yan, XUE Lai, LIU Yongchang. Indirect determination of trace chloride ion in power plant water by atomic absorption spectrometry[J]. Journal of Shanghai University of Electric Power, 2000, 16(1):8-12.
[29] 姚永生. 火焰原子吸收光谱法间接测定石灰石中氯含量[J]. 冶金分析, 2011(1):58-61. YAO Yongsheng. Indirect determination of chlorine in limestone by flame atomic absorption spectrometry[J]. Metallurgical Analysis, 2011(1):58-61.
[30] MAYA F, ESTELA J M, CERDÀ V. Spectrophotometric determination of chloride in waters using a multisyringe flow injection system[J]. Talanta, 2008, 74(5):1534-1538.
[31] ROCHA D L, ROCHA F R P. An environmentally friendly flow-based procedure with photo-induced oxidation for the spectrophotometric determination of chloride in urine and waters[J]. Microchemical Journal, 2013, 108(3):193-197.
[32] STADEN J V, TLOWANA S. Spectrophotometric determination of chloride in mineral and drinking waters using sequential injection analysis[J]. Fresenius Journal of Analytical Chemistry, 2001, 371(3):396-399.
[33] 王义平. 新型长周期光纤光栅特性研究[D]. 重庆:重庆大学, 2003. WANG Yiping. Research on the characteristics of new long period fiber gratings[D]. Chongqing:Chongqing University, 2003.
[34] 欧启标, 王彦, 秦子雄, 等. 长周期光纤光栅的应用研究[J]. 应用激光, 2006, 26(6):416-420. OU Qibiao, WANG Yan, QIN Zixiong, et al. Application research of long period fiber gratings[J]. Application of Laser, 2006, 26(6):416-420.
[35] 胡爱姿. 新型长周期光纤光栅部分特性及应用研究[D]. 重庆:重庆大学, 2004. HU Aizi. Research on characteristics and applications of a novel long period fiber grating[D]. Chongqing:Chongqing University, 2004.
[36] FALCIAI R, MIGNANI A G, VANNINI A. Long period gratings as solution concentration sensors[J]. Sensors & Actuators B:Chemical, 2001, 74(1/2/3):74-77.
[37] JAMES S W, TATAM R P. Optical fibre long-period grating sensors:characteristics and application[J]. Measurement Science & Technology, 2003, 14(5):49-61.
[38] JAMES S W, TATAM R P. Optical fibre long-period grating sensors:characteristics and application[J]. Measurement Science & Technology, 2003, 14(5):R49-R61.
[39] WANG J N. A microfluidic long-period fiber grating sensor platform for chloride ion concentration measurement[J]. Sensors, 2011, 11(9):8550-8568.
[40] TANG J L, WANG J N. Measurement of chloride-ion concentration with long-period grating technology[J]. Smart Materials & Structures, 2007, 16(3):665.
[41] BEY S K A K, LAM C C C, SUN T, et al. Chloride ion optical sensing using a long period grating pair[J]. Sensors & Actuators A:Physical, 2008, 141(2):390-395.
[42] 杭蕾, 吕程, 陈慧慧, 等. 自动电位滴定法测定烟气氨法脱硫模拟浆液中氯离子的研究[J]. 工业安全与环保, 2015(3):31-34. HANG Lei, LYU Cheng, CHEN Huihui, et al. Study on determination of chloride ions in simulated ammonia desulfurization flue gas by auto potential titration[J]. Industrial Safety and Environmental Protection, 2015(3):31-34.
[43] 戴恩贤, 周英. 多项目自动电位滴定连续检测中氯离子测定的研究[J]. 工业水处理, 2015(9):82-86. DAI Enxian, ZHOU Ying. Studies on determination of chloride ion in continuous test of multi-project automatic potentiometric titration[J]. Industrial Water Treatment, 2015(9):82-86.
[44] 丘山, 丘圣, 丘星初. 水和废水中氯离子的自动电位滴定[J]. 中国环境监测, 2010(5):32-34. QIU Shan, QIU Sheng, QIU Xingchu. Automatic potentiometric titration of chloride in water and wastewater[J]. China Environmental Monitoring, 2010(5):32-34.
[45] 张雨青. 电位法测定循环水中的氯离子[J]. 光谱实验室, 2012(3):1659-1662. ZHANG Yuqing. Potential method for the determination of chloride in circulating water[J]. Spectroscopy Laboratory, 2012(3):1659-1662.
[46] NOËL J J, AHLUWALIA G K. Electrochemical sensors[M]. Berlin:Springer International Publishing, 2017.
[47] WEI D, IVASKA A. Applications of ionic liquids in electrochemical sensors[J]. Analytica Chimica Acta, 2008, 607(2):126.
[48] LINDNER E, KONSTANTIN N, Mikhelson:ion-selective electrodes[J]. Analytical & Bioanalytical Chemistry, 2014, 406(2):373-374.
[49] MIKHELSON K N, LEWENSTAM A, DIDINA S E. Contribution of the diffusion potential to the membrane potential and to the ion-selective electrode response[J]. Electroanalysis, 2010, 11(10/11):793-798.
[50] MIKHELSON K N. Ion-selective electrodes with crystalline membranes[M]. Berlin:Springer, 2013:113-124.
[51] PESHKOVA M A, MIKHELSON K N. Solvent polymeric membrane ion-selective electrodes under galvanostatic control:powerful tool for analysis of extremely diluted samples[J]. Electrochimica Acta, 2013, 110:829-835.
[52] BRATOVCIC A, ODOBASIC A. Determination of fluoride and chloride contents in drinking water by ion selective electrode[EB/OL].[2017-11-15]. http://cdn.intechopen.com/pdfs/22739.pdf.
[53] 陈吉勇, 陈娟. 基于离子选择电极的氯离子浓度检测的研究[J]. 北京化工大学学报(自然科学版), 2016(5):95-100. CHEN Jiyong, CHEN Juan. Detection of chloride ion concentration based on ion-selective electrode[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2016(5):95-100.
[54] PERDIKAKI K, TSAGATAKIS J K, CHANIOTAKIS N A. A new chloride-selective carrier and its evaluation in ion-selective electrodes[J]. Microchimica Acta, 2001, 136(3-4):217-221.
[55] CHOU J C, LIU C H, SU M W, et al. Chloride ion selective electrode for detection of low chloride ion concentration[C]//Nanoelectronics Conference, IEEE, 2011:1-2. DOI:10.1109/inec.2011.5991671. |