Chemical Industry and Engineering Progree ›› 2016, Vol. 35 ›› Issue (06): 1660-1675.DOI: 10.16085/j.issn.1000-6613.2016.06.007
• Chemical processes and equipments • Previous Articles Next Articles
WEI Jinjia, HUANG Chonghai, XU Na
Received:
2016-01-15
Revised:
2016-02-15
Online:
2016-06-05
Published:
2016-06-05
魏进家, 黄崇海, 徐娜
通讯作者:
魏进家(1971-),男,博士,教授。主要从事非牛顿流体减阻及强化传热方面的研究。E-mail:jjwei@mail.xjtu.edu.cn。
作者简介:
魏进家(1971-),男,博士,教授。主要从事非牛顿流体减阻及强化传热方面的研究。E-mail:jjwei@mail.xjtu.edu.cn。
基金资助:
CLC Number:
WEI Jinjia, HUANG Chonghai, XU Na. Research progress concerning turbulent drag reduction of surfactant solution[J]. Chemical Industry and Engineering Progree, 2016, 35(06): 1660-1675.
魏进家, 黄崇海, 徐娜. 表面活性剂湍流减阻研究进展[J]. 化工进展, 2016, 35(06): 1660-1675.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2016.06.007
[1] GASLJEVIC K,HOYER K,MATTHYS E F. Temporary degradation and recovery of drag-reducing surfactant solutions[J]. Journal of Rheology (1978-present),2007,51(4):645-667. [2] 焦利芳,李风臣,苏文涛. 表面活性剂减阻剂在集中供热系统中的应用试验研究[J]. 节能技术,2008,26(3):195-201. [3] KROPE A,LIPUS L C. Drag reducing surfactants for district heating[J]. Applied Thermal Engineering,2010,30(8):833-838. [4] MA N,WEI J,WANG J. Evaluation of surfactant drag reduction effect in a district heating system[J]. Advances in Mechanical Engineering,2011,3:947179. [5] HOFFMANN H. Structure formation in surfactant solutions:a personal view of 35years of research in surfactant science[J]. Advances in Colloid and Interface Science,2012,178:21-33. [6] 魏进家,姚志强. 一种界面活性剂减阻溶液的流变特性[J]. 化工学报,2007,58(2):335-340. [7] 马宁,魏进家. 中等浓度表面活性剂溶液流变特性的实验研究[J]. 西安交通大学学报,2012,46(1):30-34. [8] XU N,WEI J J. Time-dependent shear-induced nonlinear viscosity effects in dilute CTAC/NaSal Solutions:mechanism analyses[J]. Advances in Mechanical Engineering,2014,6:179394. [9] LU B,LI X,SCRIVEN L E,et al. Effect of chemical structure on viscoelasticity and extensional viscosity of drag-reducing cationic surfactant solutions[J]. Langmuir,1998,14(1):8-16. [10] LIN Z,MATEO A,ZHENG Y,et al. Comparison of drag reduction,rheology,microstructure and stress-induced precipitation of dilute cationic surfactant solutions with odd and even alkyl chains[J]. Rheologica Acta,2002,41(6):483-492. [11] FÖRSTER S,PLANTENBERG T. From self‐organizing polymers to nanohybrid and biomaterials[J]. Angewandte Chemie International Edition,2002,41(5):688-714. [12] NARAYANAN J,MENDES E,Manohar C. Vesicle to micelle transition driven by surface solid-fluid transition[J]. International Journal of Modern Physics B,2002,16(01n02):375-382. [13] YIN H,HUANG J,LIN Y,et al. Heating-induced micelle to vesicle transition in the cationic-anionic surfactant systems:comprehensive study and understanding[J]. The Journal of Physical Chemistry B,2005,109(9):4104-4110. [14] KOSAKA Y,ITO M,KAWABATA Y,et al. Lamellar-to-onion transition with increasing temperature under shear flow in a nonionic surfactant/water system[J]. Langmuir,2009,26(6):3835-3842. [15] ITO M,KOSAKA Y,KAWABATA Y,et al. Transition processes from the lamellar to the onion state with increasing temperature under shear flow in a nonionic surfactant/water system studied by rheo-SAXS[J]. Langmuir,2011,27(12):7400-7409. [16] SATO D,OBARA K,KAWABATA Y,et al. Re-entrant lamellar/onion transition with varying temperature under shear flow[J]. Langmuir,2012,29(1):121-132. [17] CAPPELAERE E,CRESSELY R,MAKHLOUFI R,et al. Temperature and flow-induced viscosity transitions for CTAB surfactant solutions[J]. Rheologica Acta,1994,33(5):431-437. [18] ZHOU Y B,XU N,MA N,et al. On Relationships among the aggregation number,rheological property,and turbulent drag-reducing effect of surfactant solutions[J]. Advances in Mechanical Engineering,2011,3:345328. [19] FULLER G G,CATHEY C A,Hubbard B,et al. Extensional viscosity measurements for low‐viscosity fluids[J]. Journal of Rheology(1978-present),1987,31(3):235-249. [20] DONTULA P,PASQUALI M,SCRIVEN L E,et al. Can extensional viscosity be measured with opposed-nozzle devices?[J]. Rheologica Acta,1997,36(4):429-448. [21] SIGINER A. General Weissenberg effect in free surface rheometry part I:analytical considerations[J]. Zeitschrift für Angewandte Mathematik und Physik ZAMP,1984,35(4):545-558. [22] WEI J J,LI F C,YU B,et al. Swirling flow of a viscoelastic fluid with free surface—Part I:experimental analysis of vortex motion by PIV[J]. Journal of Fluids Engineering,2006,128(1):69-76. [23] WEI J J,KAWAGUCHI Y,YU B,et al. Microstructures and rheology of micellar surfactant solution by Brownian dynamics simulation[J]. Nonlinear Dynamics,2010,61(3):503-515. [24] WEI J J,KAWAGUCHI Y,YU B,et al. Brownian dynamics simulation of microstructures and elongational viscosities of micellar surfactant solution[J]. Chinese Physics Letters,2008,25(12):4469. [25] 魏进家,川口靖夫,宇波,等. 表面活性剂溶液内部微观结构和流变特性研究[J]. 工程热物理学报,2008,29(5):803-806. [26] ZHANG C W,WEI J. Mesoscale simulation study of the structure and rheology of dilute solutions of flexible micelles[J]. Chemical Engineering Science,2013,102:544-550. [27] MAGID L J,LI Z,BUTLER P D. Flexibility of elongated sodium dodecyl sulfate micelles in aqueous sodium chloride:a small-angle neutron scattering study[J]. Langmuir,2000,16(26):10028-10036. [28] 王剑峰,魏进家,李凤臣,等. 表面活性剂溶液的减阻和传热特性研究[J]. 工程热物理学报,2010(11):1859-1862. [29] SUBBARAO C V,DIVYA P,APPALANAIDUM D,et al. Drag reduction by anionic surfactant solutions in gravity driven flow systems[J]. Iranian Journal of Chemistry and Chemical Engineering,2013,32(1):95-101. [30] 魏进家,川口靖夫. 一种新型两性界面活性剂的减阻特性[J]. 化工学报,2006,57(11):2750-2754. [31] CAI S,HIGUCHI Y. Drag-reduction behavior of an unusual nonionic surfactant in a circular pipe turbulent flow[J]. Journal of Hydrodynamics,Ser. B,2014,26(3):400-405. [32] 顾卫国,王德忠,川口靖夫,等. 矩形槽道内表面活性剂减阻流体流场特性[J]. 力学学报,2010,42(2):312-318. [33] HADRI F,BESQ A,GUILLOU S,et al. Temperature and concentration influence on drag reduction of very low concentrated CTAC/NaSal aqueous solution in turbulent pipe flow[J]. Journal of Non-Newtonian Fluid Mechanics,2011,166(5):326-331. [34] TUAN N A,MIZUNUMA H. High-shear drag reduction of surfactant solutions[J]. Journal of Non-Newtonian Fluid Mechanics,2013,198:71-77. [35] 马宁,徐娜,魏进家,等.表面活性剂溶液最大减阻率及其尺度放大[J]. 工程热物理学报,2013,9:017. [36] BOUTOUDJ M S,OUIBRAHIM A,DESLOUIS C. Mass transfer in elongational laminar and turbulent flows of drag reducing solutions of quaternary ammonium surfactants. Influence of the counter-ion to surfactant concentrations ratio[J]. Chemical Engineering and Processing:Process Intensification,2015,93:34-43. [37] WEI J J,WANG J F,ZHANG C W,et al. Combined effects of temperature and Reynolds number on drag‐reducing characteristics of a cationic surfactant solution[J]. The Canadian Journal of Chemical Engineering,2012,90(5):1304-1310. [38] WEI J J,KAWAGUCHi Y,LI F C,et al. Drag-reducing and heat transfer characteristics of a novel zwitterionic surfactant solution[J]. International Journal of Heat and Mass Transfer,2009,52(15):3547-3554. [39] TAMANO S,IKARASHI H,MORINISHI Y,et al. Drag reduction and degradation of nonionic surfactant solutions with organic acid in turbulent pipe flow[J]. Journal of Non-Newtonian Fluid Mechanics,2015,215:1-7. [40] ABDULBARI H A,YUNUS R M,ABDURAHMAN N H,et al. Going against the flow—A review of non-additive means of drag reduction[J]. Journal of Industrial and Engineering Chemistry,2013,19(1):27-36. [41] CAI W H,LI F C,ZHANG H N,et al. Study on the characteristics of turbulent drag-reducing channel flow by particle image velocimetry combining with proper orthogonal decomposition analysis[J]. Physics of Fluids(1994-present),2009,21(11):115103. [42] HADRI F,GUILLOU S. Drag reduction by surfactant in closed turbulent flow[J]. Int. J. Eng. Sci. Tech.,2010,2(12):6876-6879. [43] MOTOZAWA M,WATANABE T,KAWAGUCHI Y. PIV measurements of large-scale structures in a drag-reducing channel flow with surfactant additives[J]. 日本レオロジー学会誌,2011,39(3):99-104. [44] 魏进家,川口靖夫. 零下温度时二维通道内界面活性剂减阻流动的实验研究[J]. 西安交通大学学报,2006,40(1):79-83. [45] WEI J J,KAWAGUCHI Y,LI F C,et al. Reduction and turbulence characteristics in sub-zero temperature range of cationic and zwitterionic surfactants in EG/water solvent[J]. Journal of Turbulence,2009 (10):N10. [46] KAWAGUCHI Y,LI F C,YU B,et al. Turbulent drag reduction with surfactant additives—basic research and application to an air conditioning system[M]//new trends in fluid mechanics research. Springer Berlin Heidelberg,2009:29-36. [47] LI F C,YU B,Wei J J,et al. Turbulent drag reduction by surfactant additives[M]. John Wiley & Sons,2012. [48] YU B,LI F,KAWAGUCHI Y. Numerical and experimental investigation of turbulent characteristics in a drag-reducing flow with surfactant additives[J]. International Journal of Heat and Fluid Flow,2004,25(6):961-974. [49] 顾卫国. 表面活性剂减阻流体减阻机理的实验与直接数值模拟研究[D]. 上海:上海交通大学,2010. [50] GU W,WANG D,KAWAGUCHI Y. Study on the drag reducing channel fluids by experiments and dns using giesekusmodel[J]. Advances in Mechanical Engineering,2014,6:175059. [51] WANG Y,YU B,WU X,et al. POD study on large-scale structures of viscoelastic turbulent drag-reducing flow[J]. Advances in Mechanical Engineering,2014,6:574381. [52] LI Fengchen,WANG Lu,CAI Weihua. A new subgrid-scale model for large eddy simulation LES of turbulent drag-reducing flows of viscoelastic fluids[J]. Chinese Physics B,2015,24(7):074701. [53] YU B,WU X,WEI J,et al. DNS study by a bilayer model on the mechanism of heat transfer reduction in drag-reduced flow induced by surfactant[J]. International Communications in Heat and Mass Transfer,2011,38(2):160-167. [54] WANG Y,YU B,WU X,et al. POD study on the mechanism of turbulent drag reduction and heat transfer reduction based on Direct Numerical Simulation[J]. Progress in Computational Fluid Dynamics,an International Journal,2011,11(3/4):149-159. [55] 庞明军,魏进家,王剑峰,等. 提高表面活性剂减阻溶液传热研究进展[J]. 化工进展,2009,28(10):1693-1700. [56] WANG Y,SHI H,FANG B,et al. Heat transfer enhancement for drag-reducing surfactant fluid using photo-rheological counterion[J]. Experimental Heat Transfer,2012,25(3):139-150. [57] Różański J. Heat transfer in the thermal entrance region for drag reduction surfactant solutions in pipe flow[J]. International Journal of Heat and Mass Transfer,2012,55(4):1113-1125. [58] QI Y,KAWAGUCHI Y,CHRISTENSEN R N,et al. Enhancing heat transfer ability of drag reducing surfactant solutions with static mixers and honeycombs[J]. International Journal Of Heat and Mass Transfer,2003,46(26):5161-5173. [59] LI P,KAWAGUCHI Y,DAISAKA H,et al. Heat transfer enhancement to the drag-reducing flow of surfactant solution in two-dimensional channel with mesh-screen inserts at the inlet[J]. Journal of Heat Transfer,2001,123(4):779-789. [60] YANG S Q,DOU G. Turbulent drag reduction with polymer additive in rough pipes[J]. Journal of Fluid Mechanics,2010,642:279-294. [61] SEMENOV B N. The combination of polymer,compliant wall,and microbubble drag reduction schemes[J]. Advances in Mechanical Engineering,2011,3:743975. [62] KIM J T,AM KIM C,ZHANG K,et al. Effect of polymer–surfactant interaction on its turbulent drag reduction[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,391(1):125-129. [63] BEWERSDORFF H W,Thiel H. Turbulence structure of dilute polymer and surfactant solutions in artificially roughened pipes[J]. Applied Scientific Research,1993,50(3/4):347-368. [64] DE Guzman M R,SAEKI T,Usui H,et al. Surfactant drag reduction in internally-grooved rough tubes[J]. Journal of Chemical Engineering of Japan,1999,32(4):402-408. [65] RÓŻAŃSKI J. Flow of drag-reducing surfactant solutions in rough pipes[J]. Journal of Non-Newtonian Fluid Mechanics,2011,166(5):279-288. [66] HUANG C H,WEI J J. Experimental study on collaborative drag reduction performance of surfactant solution in grooved channels[J]. Brazilian Journal of Chemical Engineering,2016,in Press. [67] QI YY,KESSELMAN E,HART D J,et al. Comparison of oleyl and elaidyl isomer surfactant–counterion systems in drag reduction,rheological properties and nanostructure[J]. Journal of Colloid and Interface Science,2011,354(2):691-699. [68] MYSKA J,MIK V. Application of a drag reducing surfactant in the heating circuit[J]. Energy and Buildings,2003,35(8):813-819. [69] EZRAHI S,TUVAL E,ASERIN A. Properties,main applications and perspectives of worm micelles[J]. Advances in Colloid and Interface Science,2006,128:77-102. [70] BANNAI M,KUWABARA K,ITASAKA H. Energy-saving in chilled-water supply system for clean room of semiconductor manufacturing plant[J]. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers,2012,23: 133-143. [71] HOYT J W. Scale-up from laboratory pipe-flow data to large flows[C]//ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. American Society of Mechanical Engineers,2003:745-749. [72] KAWAGUCHI Y,TAWARAYA Y,YABE A,et al. Turbulent transport mechanism in a drag reducing flow with surfactant additive investigated by two component LDV[C]//Proceedings of 8th International Symposium on Application of Laser Techniques to Fluid Mechanics. 1996,29:1-29.4. |
[1] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[2] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[3] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[4] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[5] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[6] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[7] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[8] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[9] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
[10] | ZHAO Jian, ZHUO Zewen, DONG Hang, GAO Wenjian. A new method for observation of microstructure of waxy crude oil and its emulsion system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4372-4384. |
[11] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[12] | LIU Houli, GU Zhonghao, YANG Kang, ZHANG Li. Effect of groove width on pool boiling heat transfer characteristics in 3D printing groove structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2282-2288. |
[13] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[14] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
[15] | MA Runmei, YANG Haichao, LI Zhengda, LI Shuangxi, ZHAO Xiang, ZHANG Guoqing. Influence analysis of coating on deformation and frictional wear of mechanical seal end for high-speed bearing cavity [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1688-1697. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |