Chemical Industry and Engineering Progree ›› 2015, Vol. 34 ›› Issue (3): 675-679,694.DOI: 10.16085/j.issn.1000-6613.2015.03.012

Previous Articles     Next Articles

Investigation of a novel thermoelectric cooling device

WANG Yaxiong, ZHANG Bo   

  1. School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, China
  • Received:2014-08-10 Revised:2014-09-11 Online:2015-03-05 Published:2015-03-05

新型热电制冷装置的实验开发

王亚雄, 张博   

  1. 内蒙古科技大学化学与化工学院, 内蒙古 包头 014010
  • 通讯作者: 王亚雄(1964-),男,博士,教授,主要研究微型热管及相变装置、纳米多孔材料内的相变传热与传质。E-mail:yaxiongw@hotmail.com。
  • 作者简介:王亚雄(1964-),男,博士,教授,主要研究微型热管及相变装置、纳米多孔材料内的相变传热与传质。E-mail:yaxiongw@hotmail.com。
  • 基金资助:

    国家自然科学基金(51066004)及内蒙古自治区高校科研项目(NJZY13131)

Abstract: A novel thermoelectric cooling device with a liquid cooling system was developed and assembled for sub-ambient temperature cooling of chips in over-clocking or super calculating testing system was set up and experiments were conducted to investigate the refrigeration performances of device in various application conditions. Results showed that the maximum heat dissipating capacity was 7W/cm2 when case temperature was the same as ambient temperature, operating voltage of TEC was 48V and the cooling air flowrate was 3-5m/s. TEC was conducive to heat dissipation especially in high ambient temperature (35℃). The case temperature of the heat source was reduced by 5.4℃ at the input heat flux of 23.78W/cm2, operating voltage of TEC 16-48V, and cooling air flowrate of 5m/s. In addition, the liquid cooling system was beneficial to coefficient of performance(COP) of TEC. The maximum COP and heat flux were 3.5 and 15W/cm2 respectively at the case temperature was 10℃ higher than ambient temperature, operating voltage of TEC 4-48V and the cooling air flowrate of 3-5m/s.

Key words: thermoelectric cooling, microelectronic chips, product design, heat conduction, heat transfer

摘要: 旨在开发一种热电制冷装置(TEC), 实现微电子设备芯片低于环境温度的冷却, 解决芯片超频运行后的散热问题。为了研究该装置的制冷效果, 将其串联在传统液冷散热系统中。通过搭建实验测试平台, 对该装置在不同环境温度、芯片不同热流密度、不同工况和不同制冷效率下的制冷性能进行了实验研究。研究表明, 维持热源表面温度与环境温度相等、TEC工作电压48V、风速3~5m/s的条件下, 散热能力可达7W/cm2。散热器工作在高环境温度(35℃)下, TEC能有效降低散热阻力, 提升最大散热量。当热流密度为23.78W/cm2、风速为5m/s时, TEC工作在16~48V电压值下, 热源表面温度最大降低5.4℃。实验研究同时显示, 传统液体散热系统对提升TEC能效比(COP)有较积极的作用。维持热源表面温度比环境温度高10℃、TEC输入电压4~48V、风速3~5m/s情况下, 最大能效比达3.5, 最大热流密度达到15W/cm2

关键词: 热电制冷, 微电子芯片, 产品设计, 热传导, 传热

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd