化工进展 ›› 2020, Vol. 39 ›› Issue (S1): 270-280.DOI: 10.16085/j.issn.1000-6613.2019-1595
收稿日期:
2019-10-09
出版日期:
2020-05-20
发布日期:
2020-06-29
通讯作者:
廖亚龙
作者简介:
史公初(1994—),男,硕士研究生,研究方向为资源二次回收利用。E-mail:基金资助:
Gongchu SHI(), Yalong LIAO(), Bowen SU, Yu ZHANG, Jiajun XI
Received:
2019-10-09
Online:
2020-05-20
Published:
2020-06-29
Contact:
Yalong LIAO
摘要:
采用响应曲面法的中心组合设计原理,建立浸出温度、硫酸浓度及液固比及三者之间交互作用对选择性浸出率与矿浆过滤速率的多元二次回归方程,并使用自适应权重粒子群算法对铜冶炼渣氧压硫酸选择性浸出工艺进行多目标优化。结果表明:浸出温度、硫酸浓度和液固比均是影响浸出率和过滤速率的主要因素,各响应因素间存在交互效应,且选择性浸出率与矿浆过滤速率在最佳条件上存在差异。优化后的选择性浸出率和矿浆过滤速率最佳的工艺条件为:温度为204.1℃、硫酸浓度为0.46mol/L、液固比为6.9mL/g,此条件下选择性浸出率为96.95%,过滤速率为399.42L/(m2?h),与验证实验中平均选择性浸出率、平均过滤速率分别为96.57%,398L/(m2?h)相比,偏差较小,预测值与验证实际值吻合好,表明模型选择准确,优化方案可信。
中图分类号:
史公初, 廖亚龙, 苏博文, 张宇, 郗家俊. 响应曲面法多目标优化铜冶炼渣氧压选择性浸出工艺[J]. 化工进展, 2020, 39(S1): 270-280.
Gongchu SHI, Yalong LIAO, Bowen SU, Yu ZHANG, Jiajun XI. Multi-objective optimization of pressure oxidative selective leaching of copper smelting slag by response surface methodology[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 270-280.
成分 | TFe | MgO | CaO | SiO2 | Αl2O3 | Cu | Zn | S |
---|---|---|---|---|---|---|---|---|
质量分数/% | 41.36 | 2.51 | 2.54 | 30.50 | 4.24 | 0.64 | 1.94 | 0.98 |
表1 铜冶炼渣的主要成分
成分 | TFe | MgO | CaO | SiO2 | Αl2O3 | Cu | Zn | S |
---|---|---|---|---|---|---|---|---|
质量分数/% | 41.36 | 2.51 | 2.54 | 30.50 | 4.24 | 0.64 | 1.94 | 0.98 |
区域 | 参数 | O | Mg | Αl | Si | S | Ca | Fe | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|---|
1 | 质量分数 原子分数 | 19.13 38.34 | 1.32 1.74 | 1.54 1.83 | 10.65 12.16 | 10.03 10.03 | 1.26 1.01 | 33.95 19.49 | 17.98 9.07 | 1.74 0.85 |
2 | 质量分数 原子分数 | 28.72 50.18 | 1.74 2.01 | 1.57 2.22 | 16.47 16.39 | 0.75 0.65 | 1.79 1.25 | 43.45 21.75 | — — | 2.27 0.97 |
3 | 质量分数 原子分数 | 27.76 49.80 | 2.06 2.44 | 2.30 2.44 | 16.02 16.37 | 1.14 1.02 | 1.73 12.4 | 42.93 22.06 | — — | 2.11 0.93 |
表2 图2中3区域的能谱分析结果 (%)
区域 | 参数 | O | Mg | Αl | Si | S | Ca | Fe | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|---|
1 | 质量分数 原子分数 | 19.13 38.34 | 1.32 1.74 | 1.54 1.83 | 10.65 12.16 | 10.03 10.03 | 1.26 1.01 | 33.95 19.49 | 17.98 9.07 | 1.74 0.85 |
2 | 质量分数 原子分数 | 28.72 50.18 | 1.74 2.01 | 1.57 2.22 | 16.47 16.39 | 0.75 0.65 | 1.79 1.25 | 43.45 21.75 | — — | 2.27 0.97 |
3 | 质量分数 原子分数 | 27.76 49.80 | 2.06 2.44 | 2.30 2.44 | 16.02 16.37 | 1.14 1.02 | 1.73 12.4 | 42.93 22.06 | — — | 2.11 0.93 |
因素 | 编码 | 单位 | 水平 | 梯步值 | ||||
---|---|---|---|---|---|---|---|---|
-1.682(-α) | -1 | 0 | +1 | +1.682(+α) | ||||
温度 | x1 | °C | 183 | 190 | 200 | 210 | 217 | 15 |
硫酸浓度 | x2 | mol·L-1 | 0.23 | 0.3 | 0.4 | 0.5 | 0.57 | 0.1 |
液固比 | x3 | mL·g-1 | 4.3 | 5 | 6 | 7 | 7.7 | 1 |
表3 试验因素水平及编码
因素 | 编码 | 单位 | 水平 | 梯步值 | ||||
---|---|---|---|---|---|---|---|---|
-1.682(-α) | -1 | 0 | +1 | +1.682(+α) | ||||
温度 | x1 | °C | 183 | 190 | 200 | 210 | 217 | 15 |
硫酸浓度 | x2 | mol·L-1 | 0.23 | 0.3 | 0.4 | 0.5 | 0.57 | 0.1 |
液固比 | x3 | mL·g-1 | 4.3 | 5 | 6 | 7 | 7.7 | 1 |
编号 | 编码 | 浸出率/% | 选择性浸出率Y1/% | 过滤速率Y2/L·m-2·h-1 | ||||
---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | Cu | Fe | Si | |||
1 | 0 | α | 0 | 97.49 | 1.97 | 1.41 | 94.11 | 374.64 |
2 | -1 | 1 | 1 | 96.86 | 1.59 | 1.05 | 94.22 | 356.59 |
3 | 0 | 0 | 0 | 97.39 | 1.23 | 1.32 | 94.84 | 391.20 |
4 | 0 | 0 | 0 | 97.63 | 1.07 | 1.72 | 94.84 | 388.85 |
5 | 1 | 1 | 1 | 98.32 | 1.68 | 0.81 | 95.83 | 403.25 |
6 | 0 | 0 | 0 | 97.63 | 1.03 | 1.80 | 94.80 | 395.14 |
7 | 0 | 0 | 0 | 97.63 | 1.13 | 1.73 | 94.77 | 392.11 |
8 | -α | 0 | 0 | 95.09 | 0.87 | 1.23 | 92.99 | 316.27 |
9 | α | 0 | 0 | 98.12 | 0.92 | 1.63 | 95.57 | 370.03 |
10 | 1 | -1 | 1 | 95.81 | 0.53 | 1.52 | 93.76 | 349.44 |
11 | 0 | 0 | -α | 93.28 | 1.09 | 2.46 | 89.73 | 268.61 |
12 | -1 | 1 | -1 | 96.79 | 2.31 | 2.45 | 92.03 | 296.88 |
13 | 0 | 0 | 0 | 96.92 | 1.03 | 1.02 | 94.87 | 394.61 |
14 | -1 | -1 | 1 | 94.15 | 1.28 | 2.87 | 90.00 | 316.13 |
15 | 1 | -1 | -1 | 90.80 | 2.71 | 1.13 | 86.96 | 302.45 |
16 | -1 | -1 | -1 | 88.17 | 1.19 | 1.76 | 85.22 | 297.84 |
17 | 0 | 0 | 0 | 98.08 | 1.13 | 2.12 | 94.83 | 393.65 |
18 | 1 | 1 | -1 | 94.94 | 1.22 | 1.51 | 92.21 | 320.40 |
19 | 0 | 0 | α | 97.54 | 1.26 | 1.33 | 94.95 | 379.97 |
20 | 0 | -α | 0 | 86.99 | 0.42 | 2.04 | 84.53 | 335.28 |
表4 响应曲面法优化结果
编号 | 编码 | 浸出率/% | 选择性浸出率Y1/% | 过滤速率Y2/L·m-2·h-1 | ||||
---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | Cu | Fe | Si | |||
1 | 0 | α | 0 | 97.49 | 1.97 | 1.41 | 94.11 | 374.64 |
2 | -1 | 1 | 1 | 96.86 | 1.59 | 1.05 | 94.22 | 356.59 |
3 | 0 | 0 | 0 | 97.39 | 1.23 | 1.32 | 94.84 | 391.20 |
4 | 0 | 0 | 0 | 97.63 | 1.07 | 1.72 | 94.84 | 388.85 |
5 | 1 | 1 | 1 | 98.32 | 1.68 | 0.81 | 95.83 | 403.25 |
6 | 0 | 0 | 0 | 97.63 | 1.03 | 1.80 | 94.80 | 395.14 |
7 | 0 | 0 | 0 | 97.63 | 1.13 | 1.73 | 94.77 | 392.11 |
8 | -α | 0 | 0 | 95.09 | 0.87 | 1.23 | 92.99 | 316.27 |
9 | α | 0 | 0 | 98.12 | 0.92 | 1.63 | 95.57 | 370.03 |
10 | 1 | -1 | 1 | 95.81 | 0.53 | 1.52 | 93.76 | 349.44 |
11 | 0 | 0 | -α | 93.28 | 1.09 | 2.46 | 89.73 | 268.61 |
12 | -1 | 1 | -1 | 96.79 | 2.31 | 2.45 | 92.03 | 296.88 |
13 | 0 | 0 | 0 | 96.92 | 1.03 | 1.02 | 94.87 | 394.61 |
14 | -1 | -1 | 1 | 94.15 | 1.28 | 2.87 | 90.00 | 316.13 |
15 | 1 | -1 | -1 | 90.80 | 2.71 | 1.13 | 86.96 | 302.45 |
16 | -1 | -1 | -1 | 88.17 | 1.19 | 1.76 | 85.22 | 297.84 |
17 | 0 | 0 | 0 | 98.08 | 1.13 | 2.12 | 94.83 | 393.65 |
18 | 1 | 1 | -1 | 94.94 | 1.22 | 1.51 | 92.21 | 320.40 |
19 | 0 | 0 | α | 97.54 | 1.26 | 1.33 | 94.95 | 379.97 |
20 | 0 | -α | 0 | 86.99 | 0.42 | 2.04 | 84.53 | 335.28 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | p值 | 显著水平 |
---|---|---|---|---|---|---|
模型 | 224.22 | 9 | 24.91 | 75.26 | < 0.0001 | 显著 |
x1 | 9.90 | 1 | 9.90 | 29.91 | 0.0003 | |
x2 | 86.96 | 1 | 86.96 | 262.71 | < 0.0001 | |
x3 | 50.14 | 1 | 50.14 | 151.49 | < 0.0001 | |
x1x2 | 1.72 | 1 | 1.72 | 5.20 | 0.0458 | |
x1x3 | 1.49 | 1 | 1.49 | 4.49 | 0.0600 | |
x2x3 | 4.16 | 1 | 4.16 | 12.57 | 0.0053 | |
x12 | 1.31 | 1 | 1.31 | 3.97 | 0.0743 | |
x22 | 60.89 | 1 | 60.89 | 183.96 | < 0.0001 | |
x32 | 14.06 | 1 | 14.06 | 42.49 | < 0.0001 | |
残差 | 3.31 | 10 | 0.33 | |||
失拟项 | 3.31 | 5 | 0.66 | |||
纯误差 | 0.72 | 5 | 0.14 | |||
总合 | 227.53 | 19 | ||||
R2 | 0.9855 | |||||
Adj R2 | 0.9724 |
表5 Y1回归模型的方差分析
方差来源 | 平方和 | 自由度 | 均方 | F值 | p值 | 显著水平 |
---|---|---|---|---|---|---|
模型 | 224.22 | 9 | 24.91 | 75.26 | < 0.0001 | 显著 |
x1 | 9.90 | 1 | 9.90 | 29.91 | 0.0003 | |
x2 | 86.96 | 1 | 86.96 | 262.71 | < 0.0001 | |
x3 | 50.14 | 1 | 50.14 | 151.49 | < 0.0001 | |
x1x2 | 1.72 | 1 | 1.72 | 5.20 | 0.0458 | |
x1x3 | 1.49 | 1 | 1.49 | 4.49 | 0.0600 | |
x2x3 | 4.16 | 1 | 4.16 | 12.57 | 0.0053 | |
x12 | 1.31 | 1 | 1.31 | 3.97 | 0.0743 | |
x22 | 60.89 | 1 | 60.89 | 183.96 | < 0.0001 | |
x32 | 14.06 | 1 | 14.06 | 42.49 | < 0.0001 | |
残差 | 3.31 | 10 | 0.33 | |||
失拟项 | 3.31 | 5 | 0.66 | |||
纯误差 | 0.72 | 5 | 0.14 | |||
总合 | 227.53 | 19 | ||||
R2 | 0.9855 | |||||
Adj R2 | 0.9724 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | p值 | 显著水平 |
---|---|---|---|---|---|---|
模型 | 33004.45 | 9 | 3667.16 | 90.34 | < 0.0001 | 显著 |
x1 | 2885.546 | 1 | 2885.55 | 71.08 | < 0.0001 | |
x2 | 2305.832 | 1 | 2305.83 | 56.80 | < 0.0001 | |
x3 | 11431.87 | 1 | 11431.87 | 281.62 | < 0.0001 | |
x1x2 | 130.0885 | 1 | 130.09 | 3.20 | 0.1037 | |
x1x3 | 335.9232 | 1 | 335.92 | 8.28 | 0.0165 | |
x2x3 | 746.5248 | 1 | 746.52 | 18.39 | 0.0016 | |
x12 | 5212.512 | 1 | 5212.51 | 128.41 | < 0.0001 | |
x22 | 3174.955 | 1 | 3174.96 | 78.21 | < 0.0001 | |
x32 | 9508.394 | 1 | 9508.39 | 234.23 | < 0.0001 | |
残差 | 405.9362 | 10 | 40.59 | |||
失拟项 | 378.0797 | 5 | 75.62 | |||
纯误差 | 27.85653 | 5 | 5.57 | |||
总合 | 33410.39 | 19 | ||||
R2 | 0.9879 | |||||
Adj R2 | 0.9769 |
表6 Y2回归模型的方差分析
方差来源 | 平方和 | 自由度 | 均方 | F值 | p值 | 显著水平 |
---|---|---|---|---|---|---|
模型 | 33004.45 | 9 | 3667.16 | 90.34 | < 0.0001 | 显著 |
x1 | 2885.546 | 1 | 2885.55 | 71.08 | < 0.0001 | |
x2 | 2305.832 | 1 | 2305.83 | 56.80 | < 0.0001 | |
x3 | 11431.87 | 1 | 11431.87 | 281.62 | < 0.0001 | |
x1x2 | 130.0885 | 1 | 130.09 | 3.20 | 0.1037 | |
x1x3 | 335.9232 | 1 | 335.92 | 8.28 | 0.0165 | |
x2x3 | 746.5248 | 1 | 746.52 | 18.39 | 0.0016 | |
x12 | 5212.512 | 1 | 5212.51 | 128.41 | < 0.0001 | |
x22 | 3174.955 | 1 | 3174.96 | 78.21 | < 0.0001 | |
x32 | 9508.394 | 1 | 9508.39 | 234.23 | < 0.0001 | |
残差 | 405.9362 | 10 | 40.59 | |||
失拟项 | 378.0797 | 5 | 75.62 | |||
纯误差 | 27.85653 | 5 | 5.57 | |||
总合 | 33410.39 | 19 | ||||
R2 | 0.9879 | |||||
Adj R2 | 0.9769 |
实验 | 浸出率/% | 选择性浸出率Y1/% | 过滤速率Y2/L·m-2?h-1 | ||
---|---|---|---|---|---|
Cu | Fe | Si | |||
1 | 97.94 | 0.34 | 0.81 | 96.79 | 398.17 |
2 | 98.32 | 0.42 | 1.51 | 96.39 | 394.49 |
3 | 98.18 | 0.41 | 1.24 | 96.53 | 401.38 |
平均值 | 98.08 | 0.39 | 1.12 | 96.57 | 398.01 |
表7 验证实验结果
实验 | 浸出率/% | 选择性浸出率Y1/% | 过滤速率Y2/L·m-2?h-1 | ||
---|---|---|---|---|---|
Cu | Fe | Si | |||
1 | 97.94 | 0.34 | 0.81 | 96.79 | 398.17 |
2 | 98.32 | 0.42 | 1.51 | 96.39 | 394.49 |
3 | 98.18 | 0.41 | 1.24 | 96.53 | 401.38 |
平均值 | 98.08 | 0.39 | 1.12 | 96.57 | 398.01 |
1 | 朱祖泽. 现代铜冶金学[M]. 北京: 科学出版社, 2003: 2-8. |
ZHU Zuze. Modern copper metallurgy[M]. Beijing: Science Press, 2003: 2-8. | |
2 | 赵凯, 宫晓然, 李杰, 等. 急冷铜渣矿物学及其综合利用[J]. 中国矿业, 2015(9): 102-106. |
ZHAO Kai, GONG Xiaoran, LI Jie, et al. Mineralogical characteristics and comprehensive utilization of rapid cooling copper slag[J]. China Mining Magazine, 2015(9): 102-106. | |
3 | ALTER H. The composition and environmental hazard of copper slags in the context of the Basel convention[J]. Resources Conservation and Recycling, 2005, 43(4): 353-360. |
4 | 廖亚龙, 叶朝, 王祎洋, 等. 铜冶炼渣资源化利用研究进展[J]. 化工进展, 2017, 36(8): 3066-3073. |
LIAO Yalong, YE Chao, WANG Yiyang, et al. Resource utilization of copper smelter slag—A-state-of-the-arts review[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 3066-3073. | |
5 | 王国红. 铜冶炼炉渣缓冷技术研究与生产实践[J]. 铜业工程, 2014(4): 27-30. |
WANG Guohong. Copper smelting slag slow cooling technology research and practice[J]. Copper Engineering, 2014(4): 27-30. | |
6 | 张海鑫. 浅谈铜冶炼渣缓冷工艺[J]. 中国有色冶金, 2013, 42(3): 32-33. |
ZHANG Haixin. Discussion on slow cooling process of copper smelting slag[J]. China Nonferrous Metallurgy, 2013, 42(3): 32-33. | |
7 | LI Y, PEREDERIY I, PAPANGELAKIS V G. Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching[J]. Journal of Hazardous Materials, 2008, 152(2): 607-615. |
8 | 孙建军, 黄自力, 杨蘖, 等. 铜冶炼渣硫酸浸出回收铜试验研究[J]. 矿产综合利用, 2017(6): 102-107. |
SUN Jianjun, HUANG Zili, YANG Nie, et al. Study on recovery of copper from copper smelting slag by sulfuric acid leaching[J]. Multipurpose Utilization of Mineral Resources, 2017(6): 102-107. | |
9 | 黄斐荣, 廖亚龙, 王祎洋, 等. 响应曲面法优化镍转炉渣氧压选择性浸出工艺[J]. 环境科学研究, 2016, 29(6): 894-899. |
HUANG Feirong, LIAO Yalong, WANG Yiyang, et al. Optimization of pressure oxidative acid leaching of nickel converter slag by response surface methodology[J]. Research of Environmental Sciences, 2016, 29(6): 894-899. | |
10 | 廖亚龙, 黄斐荣, 周娟, 等. 低冰镍转炉渣中钴的氧压酸浸行为及其动力学[J]. 化工学报, 2015, 66(10): 3971-3978. |
LIAO Yalong, HUANG Feirong, ZHOU Juan, et al. Kinetics and behavior of cobalt extraction from low nickel matte converter slag by pressure oxidative leaching with sulfuric acid[J]. CIESC Journal, 2015, 66(10): 3971-3978. | |
11 | MONTGOMERY D C. Design and analysis of experiments, 8th ed.[J]. Environmental Progress & Sustainable Energy, 2013, 32(1): 8-10. |
12 | 王安琪, 王永良, 叶礼平, 等. 响应曲面法优化氧化铜渣浮选提铜工艺[J]. 化工学报, 2018, 69(7): 3018-3028. |
WANG Anqi, WANG Yongliang, YE Liping, et al. Optimization of recycling copper from copper oxide smelting slag by response surface methodology[J]. CIESC Journal, 2018, 69(7): 3018-3028. | |
13 | 曹磊, 廖亚龙, 史公初, 等. 锌置换渣加压酸性浸出过程铁的物相转化及其影响[J]. 中国有色金属学报, 2019, 29(2): 404-414. |
CAO Lei, LIAO Yalong, SHI Gongchu, et al. Phase transformation of iron and its effect in pressure acid leaching process for zinc replacement residue[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(2): 404-414. | |
14 | 赵艺文. 结合型罗布麻茶化学成分及其抗氧化活性研究[D]. 南京: 南京农业大学, 2017. |
ZHAO Yiwen. Studies on bound chemical components and their antioxidant activity of Apocynum venetum tea [D]. Nanjing: Nanjing Agricultural University, 2017. | |
15 | VITANOV V I, JAVAID N, STEPHENSON D J. Application of response surface methodology for the optimization of micro friction surfacing process[J]. Surface & Coatings Technology, 2010, 204(21): 3501-3508. |
16 | DAS P K, ZHENG Y. Cumulative formation of response surface and its use in reliability analysis[J]. Probabilistic Engineering Mechanics, 2000, 15(4): 309-315. |
17 | 黄斐荣. 镍转炉渣氧压硫酸浸出提取钴、镍、铜的研究[D]. 昆明: 昆明理工大学, 2016. |
HUANG Feirong. Extraction of cobalt, nickel and copper from nickel converter slag by oxygen pressure sulfuric acid leaching [D]. Kunming: Kunming University of Science and Technology, 2016. | |
18 | KEHOE S, ARDHAOUI M, STOKES J. Design of experiments study of hydroxyapatite synthesis for orthopedic application using fractional factorial design[J]. Journal of Material Engineering and Performance, 2011, 20(8): 1423-1437. |
19 | BARI M N, ALAM M Z, MUYIBI S A. Improvement of production of citric acid from oil palm empty fruit bunches: optimization of media by statistical experimental designs[J]. Bioresoure Technology, 2009, 100(12): 3115-3120. |
20 | ARBIU I, PEREZ C J L. Surface roughness prediction by factorial design of experiments in turning processes[J]. Journal of Materials Processing Technology, 2003, 143/144(1): 390-396. |
21 | SINGH A, BISHONI N R. Optimization of ethanol production from microwave alkali pretreated rice straw using statistical experimental designs by Saccharomyces cerevisiae[J]. Industrial Crops and Products, 2012, 37(1): 334-341. |
22 | 葛宜元. 试验设计方法与Design-Expert软件应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2015: 14-18. |
GE Yiyuan. Test design method and design-expert software application[M]. Harbin: Harbin Institute of Technology Press, 2015: 14-18. | |
23 | GONZALEZ G A. Two level factorial experimental designs based on multiple linear regression models: a tutorial digest illustrated by case studies[J]. Analytica Chimica Acta, 1998, 360(1/2/3): 227-241. |
24 | 张烘州, 明伟伟, 安庆龙, 等. 响应曲面法在表面粗糙度预测模型及参数优化中的应用[J]. 上海交通大学学报, 2010, 44(4): 447-451. |
ZHANG Hongzhou, MING Weiwei, AN Qinglong, et al. Application of response surface methodology in surface roughness prediction model and parameter optimization[J]. Journal of Shanghai Jiaotong University, 2010, 44(4): 447-451. | |
25 | HE S M, WANG J K, YAN J F. Pressure leaching of synthetic zinc silicate in sulfuric acid medium[J]. Hydrometallurgy, 2011, 108(3/4): 171-176. |
26 | HUANG Feirong, LIAO Yalong, ZHOU Juan, et al. Selective recovery of valuable metals from nickel converter slag at elevated temperature with sulfuric acid solution[J]. Separation and Purification Technology, 2015, 156: 572-581. |
27 | DUFRESNE R E. Quick leach of siliceous zinc ore[J]. Journal of Metals, 1976, 28(2): 8-12. |
28 | XU H S, WEI C, LI C X, et al. Selective recovery of valuable metals from partial silicated sphalerite at elevated temperature with sulfuric acid solution[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1373-1381. |
29 | HE Shanming, WANG Jikun, YAN Jiangfeng. Pressure leaching of high silica Pb-Zn oxide ore in sulfuric acid medium[J]. Hydrometallurgy, 2010, 104(2): 235-240. |
30 | ZHANG L, TANG Y, HUA C, et al. A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques[J]. Applied Soft Computing, 2015, 28: 138-149. |
31 | EBERHART, SHI Y. Particle swarm optimization: developments, applications and resources[C]//MINJEA T, CORNE D. Proceeding of the 2001 Congress on Evolutionary Computation. Seoul: IEEE, 2001: 81-86. |
32 | 石松宁, 王大志, 时统宇. 基于RSM的永磁驱动器偏心磁极的多目标优化[J]. 仪器仪表学报, 2014, 35(9): 1963-1971. |
SHI Songning, WANG Dazhi, SHI Tongyu. Multi-objective optimization of eccentric magnet pole for permanent magnet drive based on response surface methodology[J]. Chinese Journal of Scientific Instrument, 2014, 35(9): 1963-1971. | |
33 | 吴加同. 复合材料舵固有频率与重量的优化设计[D]. 武汉: 华中科技大学, 2018. |
WU Jiatong. Optimization for natural frequency and weight of laminated composite rudder[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
34 | BRATTON D, KENNEDY J. Defining a standard for particle swarm optimization[C]//SHI Y, MARCO D. 2007 IEEE Swarm Intelligence Symposium. Honolulu: IEEE, 2007, 120-127. |
35 | 朱爱军, 李智, 许川佩. 三维IP核测试封装扫描链多目标优化设计[J]. 电子测量与仪器学报, 2014, 28(4): 373-380. |
ZHU Aijun, LI Zhi, XU Chuanpei. 3D IP core test wrapper scanning chain design based on multi-objective algorithm[J]. Journal of Electronic Measurement and Instrumentation, 2014, 28(4): 373-380. | |
36 | 高飞. MATLAB智能算法超级学习手册[M]. 北京: 人民邮电出版社, 2014: 224-248. |
GAO Fei. MATLAB & simulink books[M]. Beijing: Posts and Telecommunications Press, 2014: 224-248. | |
37 | ARSLAN C, ARSLAN F. Recovery of copper, cobalt, and zinc from copper smelter and converter slags[J]. Hydrometallurgy, 2002, 67(1/2/3): 1-7. |
[1] | 凌山, 刘聚明, 张前程, 李艳. 模拟移动床分离过程及其优化方法研究进展[J]. 化工进展, 2023, 42(5): 2233-2244. |
[2] | 代敏, 杨福胜, 张早校, 刘桂莲, 冯霄. 基于多策略集成优化算法的己烷油精馏过程3E多目标优化[J]. 化工进展, 2022, 41(6): 2852-2863. |
[3] | 蒋宁, 赵世超, 谢小东, 范伟, 徐新杰, 徐英杰. 利用余热回收多能互补技术的原油蒸馏装置热集成系统的优化改造[J]. 化工进展, 2021, 40(2): 652-663. |
[4] | 谢江维, 李春利, 黄国明. 响应面法耦合NSGA-Ⅱ算法的隔壁塔结构优化[J]. 化工进展, 2020, 39(8): 2962-2971. |
[5] | 张斌超,曾敏静,张立楠,王洪欣,曾玉,黄思浓,吴俊峰,程媛媛,龙焙. 自养硝化颗粒污泥吸附铜离子性能及吸附等温线[J]. 化工进展, 2020, 39(4): 1583-1590. |
[6] | 王春雨,朱玲,许丹芸,罗清月. 低温等离子体降解苯的工艺参数优化[J]. 化工进展, 2020, 39(1): 402-412. |
[7] | 蒋宁, 郭风元, 韩文巧, 刘华菁, 林露. 基于非逆流传热的热交换网络系统的3E优化[J]. 化工进展, 2019, 38(02): 761-771. |
[8] | 李帅, 姜晓滨, 贺高红, 肖武, 吕俊锋, 史朝霞, 罗立. 蒸汽动力系统柔性设计和多目标优化研究进展[J]. 化工进展, 2017, 36(06): 1989-1996. |
[9] | 韩庚, 曹萃文, 顾幸生. 某焦化厂供水网络多目标建模及优化[J]. 化工进展, 2016, 35(04): 1033-1041. |
[10] | 邱莹莹, 叶贞成, 赵亮, 牛进伟. 基础油供应链生产-分销计划模型及其优化[J]. 化工进展, 2016, 35(03): 711-716. |
[11] | 刘兰香, 郑华, 钱岐雄, 张雯雯, 高山, 张弘. 乙酸酐/乙酸法制备油溶性胭脂虫红色素[J]. 化工进展, 2015, 34(09): 3399-3405,3420. |
[12] | 张声洲, 夏洪应, 张利波, 彭金辉, 程松, 周朝金. 微波加热再生废弃针剂用活性炭的性能[J]. 化工进展, 2015, 34(07): 1945-1950. |
[13] | 卢定强1,2,涂清波1,凌岫泉1,王 俊1,梅巧婷1. 响应曲面法优化(salen)Co(Ⅲ)(OAc)拆分手性环氧氯丙烷的制备工艺 [J]. 化工进展, 2010, 29(2): 313-. |
[14] | 余丽丽,李仲谨,朱 雷,宋 凉. 应用响应曲面法优化N, N′-亚甲基双丙烯酰胺交联淀粉微球的合成工艺 [J]. 化工进展, 2008, 27(3): 407-. |
[15] | 赵 博;袁希钢;罗祎青. 考虑环境影响的间歇过程多目标最优化设计 [J]. 化工进展, 2007, 26(1): 113-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |