[1] PARSONS W H, SIGAL N H, WYVRATT M J. FK-506:a novel immunosuppressant[J]. Ann. N. Y. Acad. Sci., 1993, 685(1):22-36.
[2] SIERRA-PAREDES G, SIERRA-MARCUNO G. Ascomycin and FK506:pharmacology and therapeutic potential as anticonvulsants and neuroprotectants[J]. CNS Neurosci. Ther., 2008, 14:36-46.
[3] SHAPIRO R, YOUNG J B, MILFORD E L, et al. Immunosuppression:evolution in practice and trends[J]. Am. J. Transplant, 2005, 5:874-886.
[4] BARREIRO C, MARTINEZ-CASTRO M. Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506)[J]. Appl. Microbiol. Biotechnol., 2014, 98(2):497-507.
[5] MO S D, KIM H, LEE J H, et al. Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues[J]. J. Am. Chem. Soc., 2011, 133(4):976-985.
[6] MOTAMEDI H, SHAFIEE A, CAI S J, et al. Characterization of methyltransferase and hydroxylase genes involved in the biosynthesis of the immunosuppressants FK506 and FK520[J]. J. Bacteriol., 1996, 178(17):5243-5248.
[7] ANDEXER J N, KENDREW S G, NUR-E-ALAM M, et al. Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate[J]. Proc. Natl. Acad. Sci. U S A, 2011, 108(12):4776-4781.
[8] GATTO G J, BOYNE M T, KELLEHER N L, et al. Biosynthesis of pipecolic acid by RapL, a lysine cyclodeaminase encoded in the rapamycin gene cluster[J]. J. Am. Chem. Soc., 2006, 128(11):3838-3847.
[9] COOMES M W, MITCHELL B K, BEEZLEY A, et al. Properties of an Escherichia coli mutant deficient in phosphoenolpyruvate carboxylase catalytic activity[J]. J. Bacteriol.,1985,164(2):646-652.
[10] MARTINEZ-CASTRO M, SALEHI-NAJAFABADI Z, ROMERO F, et al. Taxonomy and chemically semi-defined media for the analysis of the tacrolimus producer ‘Streptomyces tsukubaensis’[J]. Appl. Microbiol. Biotechnol., 2013, 97(5):2139-2152.
[11] TURLO J, GAJZLERSKA W, KLIMASZEWSKA M, et al. Enhancement of tacrolimus productivity in Streptomyces tsukubaensis by the use of novel precursors for biosynthesis[J]. Enzyme Microb. Technol., 2012, 51(6-7):388-395.
[12] MO S, BAN Y H, PARK J W, et al. Enhanced FK506 production in Streptomyces clavuligerus CKD1119 by engineering the supply of methylmalonyl-CoA precursor[J]. J. Ind. Microbiol. Biotechnol., 2009, 36(12):1473-8142.
[13] GORANOVIC D, KOSEC G, MRAK P, et al. Origin of the allyl group in FK506 biosynthesis[J]. J. Biol. Chem., 2010, 285(19):14292-142300.
[14] CHAN Y A, PODEVELS A M, KEVANY B M, et al. Biosynthesis of polyketide synthase extender units[J]. Nat. Prod. Rep., 2009, 26(1):90-114.
[15] BRAMWELL H, NIMMO H G, HUNTER I S, et al. Phosphoenolpyruvate carboxylase from Streptomyces coelicolor A3(2):purification of the enzyme, cloning of the ppc gene and over-expression of the protein in a streptomycete[J]. Biochem. J., 1993, 293:131-136.
[16] THOMAS L, HODGSON D A, WENTZEL A, et al. Metabolic switches and adaptations deduced from the proteomes of streptomyces coelicolor wild type and phoP mutant grown in batch culture[J]. Mol. Cell Proteomics, 2011, 11(2):M111.013797.
[17] COZE F, GILARD F, TCHERKEZ G, et al. Carbon-flux distribution within Streptomyces coelicolor Metabolism:a comparison between the actinorhodin-producing strain M145 and its non-producing derivative M1146[J]. PLoS One, 2013, 8(12):e84151.
[18] DEKLEVA M L, STROHL W R. Activity of phosphoenolpyruvate carboxylase of an anthracycline-producing Streptomycete[J]. Can. J. Microbiol., 1988, 34:1241-1246.
[19] DEKLEVA M L, STROHL W R. Biosynthesis of epsilon-rhodomycinone from glucose by Streptomyces C5 and comparison with intermediary metabolism of other polyketide producing Streptomycetes[J]. Can. J. Microbiol., 1988, 34:1235-1240.
[20] NING Y, WU X, ZHANG C, et al. Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli[J]. Metab. Eng., 2016, 36:10-18.
[21] LEE K H, PARK J H, KIM T Y, et al. Systems metabolic engineering of Escherichia coli for L-threonine production[J]. Molecular Systems Biology, 2007, 3:149.
[22] HUANG D, LI S, XIA M, et al. Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement[J]. Microb. Cell Fact., 2013, 12:52.
[23] THYKAER J, NIELSEN J, WOHLLEBEN W, et al. Increased glycopeptide production after overexpression of shikimate pathway genes being part of the balhimycin biosynthetic gene cluster[J]. Metab. Eng., 2010, 12:455-461.
[24] GOSSET G, BONNER C A, JENSEN R A. Microbial origin of plant-type 2-keto-3-deoxy-D-arabino-heptulosonate 7-phosphate synthases, exemplified by the chorismate-and tryptophan-regulated enzyme from Xanthomonas campestris[J]. J. Bacteriol., 2001, 183(13):4061-4070.
[25] WU J, DU G, ZHOU J, CHEN J. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy[J]. Metab. Eng., 2013, 16:48-55.
[26] DANG L, LIU J, WANG C, et al. Enhancement of rapamycin production by metabolic engineering in Streptomyces hygroscopicus based on genome-scale metabolic model[J]. J. Ind. Microbiol. Biotechnol., 2016, 44(2):259-270.
[27] WANG W, LI X, WANG J, et al. An engineered strong promoter for streptomycetes[J]. Appl. Environ. Microbiol., 2013, 79:4484-4492.
[28] GU P, YANG F, KANG J, et al. One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in Escherichia coli[J]. Microb. Cell Fact., 2012, 11:30.
[29] XIA M, HUANG D, LI S, et al. Enhanced FK506 production in Streptomyces tsukubaensis by rational feeding strategies based on comparative metabolic profiling analysis[J]. Biotechnol. Bioeng., 2013, 110(10):2717-2730.
[30] WILKINSON C J, HUGHES-THOMAS Z A, MARTIN C J, et al. Increasing the effciency of heterologous promoters in actinomycetes[J]. J. Mol. Microbiol. Biotechnol., 2002, 4:417-426.
[31] KIESER T, BIBB M J, BUTTNER M J, et al. Practical streptomyces genetics[M]. Norwich:John Innes Foundation, 2000.
[32] LI S, WANG J, LI X, et al. Genome-wide dentifcation and evaluation of constitutive promoters in Streptomycetes[J]. Microb. Cell Fact., 2015, 14:172.
[33] SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative C(T) method[J]. Nat. Protoc., 2008, 3(6):1101-1108.
[34] PENG L, SHIMIZU K. Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement[J]. Appl. Microbiol. Biotechnol., 2003, 61:163-178.
[35] LIU Y J, LI P P, ZHAO KX, et al. Corynebacterium glutamicum contains 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases that display novel biochemical features[J]. Appl. Environ. Microbiol., 2008, 74(17):5497-5503. |