[1] 杨芳, 严新焕.N-烷基芳胺合成的研究进展[J].化工进展, 2012, 31(6):1306-1313.[2] 李小青, 杜晓华, 郑鹛, 等.绿色硝化反应研究进展[J].化工进展, 2005, 24(10):1073-1078.[3] Kang S H, Choi W.Oxidative degradation of organic compounds using zero valent iron in the presence of natural organic matter serving as an electron shuttle[J].Environmental Science & Technology, 2008, 43(3):878-883.[4] Bernstein A, Ronen Z, Adar E, et al.Compound-specific isotope analysis of RDX and stable isotope fractionation during aerobic and anaerobic biodegradation[J].Environmental Science & Technology, 2008, 42(21):7772-7777.[5] Pereira R, Pereira L, Vander Zee F P, et al.Fate of aniline and sulfanilic acid in UASB bioreactor under denitrifying conditions[J].Water Research, 2011, 45(1):191-200.[6] Zhang H, Cai J.Development of technology for the treatment of wastewater contaminated by nitro-aromatic compounds[J].Environmental Science & Technology, 2011, 34(12H):113-117.[7] 赵海丽, 姚开胜.催化还原硝基芳烃的研究现状及进展[J].化工进展, 2008, 27(12):1887-1902.[8] Liu N, Li H, Ding F, et al.Analysis of biodegradation by-products of nitrobenzene and aniline mixture by a cold-tolerant microbial consortium[J].Journal of Hazardous Materials, 2013, 260:323-329.[9] Evans D H.One-electron and two-electron transfers in electrochemistry and homogeneous solution reactions[J].Chemical Reviews, 2008, 108(7):2113-2144.[10] Rodrigues da Silva M E, Firmino P I M, dos Santos A B.Impact of the redox mediator sodium anthraquinone-2, 6-disulphonate (AQDS) on the reductive decolourisation of the azo dye Reactive Red2(RR2) in one-and two-stage anaerobic systems[J].Bioresource Technology, 2012, 121:1-7.[11] Razo Flores E, Donlon B, Lettinga G, et al.Biotransformation and biodegradation of N-substituted aromatics in methanogenic granular sludge[J].FEMS Microbiology Reviews, 1997, 20(3-4):525-538.[12] Lavine B K, Auslander G, Ritter J.Polarographic studies of zero valent iron as a reductant for remediation of nitroaromatics in the environment[J].Microchemical Journal, 2001, 70(2):69-83.[13] Hung H M, Ling F H, Hoffmann M R.Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound[J].Environmental Science & Technology, 2000, 34(9):1758-1763.[14] Qiu X, Zhong Q, Li M, et al.Biodegradation of p-nitriphenol by methyl parathion-degrading Ochrobactrum sp.B2[J].International Biodeterioration & Biodegradation, 2007, 59(4):297-301.[15] Labana S, Pandey G, Paul D, et al.Pot and field studies on bioremediation of p-nitrophenol contaminated soil using Arthrobacter protophormiae RKJ100[J].Environmental Science & Technology, 2005, 39(9):3330-3337.[16] Ghosh A, Khurana M, Chauhan A, et al.Degradation of 4-nitrophenol, 2-chloro-4-nitrophenol, and 2, 4-dinitrophenol by Rhodococcus imtechensis strain RKJ300[J].Environmental Science & Technology, 2010, 44(3):1069-1077.[17] Chauhan A, Pandey G, Sharma N K, et al.p-Nitrophenol degradation via 4-nitrocatechol in Burkholderia sp.SJ98 and cloning of some of the lower pathway genes[J].Environmental Science & Technology, 2010, 44(9):3435-3441.[18] Spain J C, Gibson D T.Pathway for biodegradation of p-nitrophenol in a Moraxella sp.[J].Applied and Environmental Microbiology, 1991, 57(3):812-819.[19] Bhushan B, Chauhan A, Samanta S K, et al.Kinetics of biodegradation of p-nitrophenol by different bacterial[J].Biochemical and Biophysical Research Communications, 2000, 274(3):626-630.[20] Uberoi V, Bhattacharya S K.Toxicity and degradability of nitrophenols in anaerobic systems[J].Water Environment Research, 1997, 69(2):146-156.[21] Donlon B A, Razo Flores E, Lettinga G, et al.Continuous detoxification, transformation, and degradation of nitrophenols in upflow anaerobic sludge blanket (UASB) reactors[J].Biotechnology and Bioengineering, 1996, 51(4):439-449.[22] Boyd S A, Shelton D R, Berry D, et al.Anaerobic biodegradation of phenolic compounds in digested sludge[J].Applied and Environmental Microbiology, 1983, 46(1):50-54.[23] Kulkarni M, Chaudhari A.Biodegradation of P-nitrophenol by P.putida[J].Bioresource Technology, 2006, 97(8):982-988.[24] Karim K, Gupta S K.Effects of alternative carbon sources on biological transformation of nitrophenols[J].Biodegradation, 2002, 13(5):353-360.[25] Chauhan A, Chakraborti A K, Jain R K.Plasmid-encoded degradation of p-nitrophenol and 4-nitrocatecheol by Arthrobacter protophormiae[J].Biochemical and Biophysical Research Communications, 2000, 270(3):733-740.[26] Field J A, Cervantes F J.Microbial redox reactions mediated by humus and structurally related quinines[C]//Use of Humic Substances To Remediate Polluted Environments:From Theory To Practice.Netherlands:Springer, 2005:343-352.[27] Schwarzenbach R P, Stierli R, Lanz K, et al.Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution[J].Environmental Science & Technology, 1990, 24(10):1566-1574.[28] Curtis G P, Reinhard M.Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic acid[J].Environmental Science & Technology, 1994, 28(13):2393-2401.[29] Lovley D R, Coates J D, Blunt-Harris E L, et al.Humic substances as electron acceptors for microbial respiration[J].Nature, 1996, 382(6590):445-448.[30] Cervantes F J, Dijksma W, Duong-Dac T, et al.Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors[J].Applied and Environmental Microbiology, 2001, 67(10):4471-4478.[31] Martinez C M, Alvarez L H, Celis L B, et al.Humus-reducing microorganisms and their valuable contribution in environmental processes[J].Applied Microbiology and Biotechnology, 2013, 97(24):10293-10308.[32] Hakala J A, Chin Y P, Weber E J.Influence of dissolved organic matter and Fe(Ⅱ) on the abiotic reduction of pentachloronitrobenzene[J].Environmental Science & Technology, 2007, 41(21):7337-7342.[33] Kappler A, Haderlein S B.Natural organic matter as reductant for chlorinated aliphatic pollutants[J].Environmental Science & Technology, 2003, 37(12):2714-2719.[34] Dunnivant F M, Schwarzenbach R P, Macalady D L.Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter[J].Environmental Science & Technology, 1992, 26(11):2133-2141.[35] Hartenbach A E, Hofstetter T B, Aeschbacher M, et al.Variability of nitrogen isotope fractionation during the reduction of nitroaromatic compounds with dissolved reductants[J].Environmental Science & Technology, 2008, 42(22):8352-8359.[36] Dos Santos A B, Bisschops I A E, Cervantes F J, et al.Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30 C) and thermophilic (55 C) treatments for decolourisation of textile wastewaters[J].Chemosphere, 2004, 55(9):1149-1157.[37] Keum Y S, Li Q X.Reduction of nitroaromatic pesticides with zero-valent iron[J].Chemosphere, 2004, 54(3):255-263.[38] Hofstetter T B, Heijman C G, Haderlein S B, et al.Complete reduction of TNT and other (poly) nitroaromatic compounds under iron-reducing subsurface conditions[J].Environmental Science & Technology, 1999, 33(9):1479-1487.[39] Tratnyek P G, Scherer M M, Deng B, et al.Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron[J].Water Research, 2001, 35(18):4435-4443.[40] Borch T, Inskeep W P, Harwood J A, et al.Impact of ferrihydrite and anthraquinone-2, 6-disulfonate on the reductive transformation of 2, 4, 6-trinitrotoluene by a gram-positive fermenting bacterium[J].Environmental Science & Technology, 2005, 39(18):7126-7133.[41] Bhushan B, Halasz A, Hawari J.Effect of iron (III), humic acids and anthraquinone-2, 6-disulfonate on biodegradation of cyclic nitramines by Clostridium sp.EDB2[J].Journal of Applied Microbiology, 2006, 100(3):555-563.[42] Kwon M J, Finneran K T.Microbially mediated biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine by extracellular electron shuttling compounds[J].Applied and Environmental Microbiology, 2006, 72(9):5933-5941.[43] Kwon M J, Finneran K T.Biotransformation products and mineralization potential for hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) in abiotic versus biological degradation pathways with anthraquinone-2, 6-disulfonate (AQDS) and Geobacter metallireducens[J].Biodegradation, 2008, 19(5):705-715.[44] Tratnyek P G, Macalady D L.Abiotic reduction of nitro aromatic pesticides in anaerobic laboratory systems[J].Journal of Agricultural and Food Chemistry, 1989, 37(1):248-254.[45] Kudlich M, Keck A, Klein J, et al.Localization of the enzyme system involved in anaerobic reduction of azo dyes by Sphingomonas sp.Strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction[J].Applied and Environmental Microbiology, 1997, 63(9):3691-3694.[46] Johnson K S, Felton G W.Physiological and dietary influences on midgut redox conditions in generalist lepidopteran larvae[J].Journal of Insect Physiology, 1996, 42(3):191-198.[47] Rau J, Stolz A.Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent azo reductases[J].Applied and Environmental Microbiology, 2003, 69(6):3448-3455.[48] Rau J, Knackmuss H J, Stolz A.Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria[J].Environmental Science & Technology, 2002, 36(7):1497-1504.[49] Nam S, Renganathan V.Non-enzymatic reduction of azo dyes by NADH[J].Chemosphere, 2000, 40(4):351-357. |