化工进展 ›› 2024, Vol. 43 ›› Issue (12): 6700-6710.DOI: 10.16085/j.issn.1000-6613.2023-1963

• 能源加工与技术 • 上一篇    

考虑波动性约束的原油全产业链生产调度优化模型

刘华林1,2(), 乔跃3, 魏志伟1,2, 包亚岭1,2, 王丽洋4, 李硕森4, 何畅5,6()   

  1. 1.中国石油天然气股份有限公司规划总院,北京 100086
    2.中国石油油气业务链优化重点实验室,北京 102206
    3.中国石油天然气股份有限公司生产经营管理部,北京 100007
    4.杉数科技(北京)有限公司,北京 100102
    5.中山大学化学工程与技术学院,广东 珠海 519082
    6.中山大学广东省石化过程节能工程技术研究中心,广东 广州 510006
  • 收稿日期:2023-11-09 修回日期:2023-12-22 出版日期:2024-12-15 发布日期:2025-01-11
  • 通讯作者: 刘华林,何畅
  • 作者简介:刘华林(1983—),男,硕士,高级工程师,研究方向为原油产业链生产运行优化。E-mail:liuhualin08@petrochina.com.cn
  • 基金资助:
    中国石油天然气股份有限公司科学研究与技术开发项目(2021DJ7704)

Production scheduling optimization model of crude oil industry chain considering volatility constraints

LIU Hualin1,2(), QIAO Yue3, WEI Zhiwei1,2, BAO Yaling1,2, WANG Liyang4, LI Shuosen4, HE Chang5,6()   

  1. 1.Petrochina Planning and Engineering Institute, CNPC, Beijing 100083, China
    2.Laboratory of Oil & Gas Business Chain Optimization, CNPC, Beijing 102206, China
    3.Production & Operation Management Department, CNPC, Beijing 100007, China
    4.Shanshu Technology (Beijing) Co. , Ltd. , Beijing 100102, China
    5.School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, China
    6.The Key Laboratory of Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
  • Received:2023-11-09 Revised:2023-12-22 Online:2024-12-15 Published:2025-01-11
  • Contact: LIU Hualin, HE Chang

摘要:

常见的原油产业链生产调度优化模型主要针对产业链中的局部环节,并且模型通常只涉及以综合成本最小为目标的单一目标线性规划。本文对原油全产业链的各个生产环节进行了精确描述,建立了能全面反映系统多目标生产调度的优化模型,并采用了ε-constraint方法对该模型进行求解。另外,在传统调度模型中,由于未能准确描述各周期内加工量和运输量的波动性,导致加工波动和运输波动量过大。为了解决这一问题,该模型引入了辅助变量和约束,对波动性因素进行惩罚,从而减少各周期内加工量和运输量的波动性,使得模型求解结果更接近实际调度情况。结果表明,考虑波动性约束的原油产业链生产调度优化模型能够在满足实际调度需求的同时,使综合成本达到一个较为理想的数值。

关键词: 智能调度, 线性规划, 加工波动, 运输波动, ε约束, 多目标优化

Abstract:

Production scheduling optimization models for crude oil industry in the supply chain typically focus on specific segments and aim to minimize overall costs through single-objective linear programming. This study presented a comprehensive and systematic multi-objective optimization model for production scheduling, accurately characterizing various stages in the entire crude oil supply chain. The ε-constraint method was employed to solve the model. To address the issue of inaccurate capturing of processing and transportation fluctuations in traditional scheduling models, this study introduced auxiliary variables and constraints to penalize volatility factors. This approach effectively reduced fluctuations in processing and transportation volumes within each period, bringing the model solutions closer to actual scheduling scenarios. The results demonstrated that the proposed optimization model, incorporating volatility constraints, achieved a more desirable overall cost value while meeting practical scheduling requirements.

Key words: intelligent scheduling, linear programming, processing fluctuation, transportation fluctuation, ε-constraint, multi-objective optimization

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn