Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (9): 5088-5096.DOI: 10.16085/j.issn.1000-6613.2021-0394
Previous Articles Next Articles
KONG Qingqiang1,2(), HUANG Xianhong1, WANG Zhenbing1, GUO Xiaoqian1, XIE Lijing1, SU Fangyuan1, SUN Guohua1, CHEN Chengmeng1()
Received:
2021-03-01
Revised:
2021-04-13
Online:
2021-09-13
Published:
2021-09-05
Contact:
CHEN Chengmeng
孔庆强1,2(), 黄显虹1, 王振兵1, 郭晓倩1, 谢莉婧1, 苏方远1, 孙国华1, 陈成猛1()
通讯作者:
陈成猛
作者简介:
孔庆强(1988—),男,博士研究生,副研究员,研究方向为石墨烯与多孔炭材料。E-mail:基金资助:
CLC Number:
KONG Qingqiang, HUANG Xianhong, WANG Zhenbing, GUO Xiaoqian, XIE Lijing, SU Fangyuan, SUN Guohua, CHEN Chengmeng. Key chemistry and chemical engineering issues in the localization of active carbon for supercapacitor[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5088-5096.
孔庆强, 黄显虹, 王振兵, 郭晓倩, 谢莉婧, 苏方远, 孙国华, 陈成猛. 超级电容器用活性炭国产化关键化学与化工问题[J]. 化工进展, 2021, 40(9): 5088-5096.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0394
指标 | 数值 |
---|---|
碳质量分数/% | >99.5 |
表面官能团含量/meq·g-1 | <0.50 |
比表面积/m2·g-1 | >1500 |
电极密度/g·cm-3 | >0.5 |
灰分(质量分数)/% | <0.5 |
金属元素含量/μg·g-1 | <100 |
粒径分布/μm | 5~12 |
比容量/F·g-1 | >120(有机体系) |
指标 | 数值 |
---|---|
碳质量分数/% | >99.5 |
表面官能团含量/meq·g-1 | <0.50 |
比表面积/m2·g-1 | >1500 |
电极密度/g·cm-3 | >0.5 |
灰分(质量分数)/% | <0.5 |
金属元素含量/μg·g-1 | <100 |
粒径分布/μm | 5~12 |
比容量/F·g-1 | >120(有机体系) |
厂家 | 型号 | 比表面积 /m2·g-1 | 孔容 /cm3·g-1 | 灰分(质量分数)/% | 铁含量② /μg·g-1 | 碳质量分数②/% | 比电容 | |
---|---|---|---|---|---|---|---|---|
/F·g-1 | /F·cm-3 | |||||||
日本可乐丽公司(Kuraray Chemical)[ | YP50F | 1600 | 0.7 | 0.3 | 25 | 95.99 | 28 | 19 |
YP80F | 2100 | 0.94 | 0.5 | — | — | 32 | 18 | |
韩国PCT公司Power Carbon Technology① | CEP21KSN | 1650~1950 | — | <0.1 | 22 | 96.90 | 36.2 | 17.5 |
CEP21KS | 1850~2150 | — | <0.1 | — | — | 37.5 | 18.1 | |
PCT9 | 1850~2050 | — | <0.1 | — | — | 35.6 | 17.1 | |
美国EnerG2① | AeroVolt | 1725 | 0.70~1.30 | <0.02 | — | — | — | — |
斯里兰卡Haycarb② | — | 1572 | 0.83 | 0.012 | 25 | 97.65 | — | — |
河南大潮炭能② | — | 1919 | 0.89 | 0.239 | 199 | 96.33 | — | — |
福建元力② | — | 1705 | 0.43 | 0.127 | 130 | 94.85 | — | — |
浙江阿佩克斯② | — | 1798 | 0.81 | 0.109 | 74 | 97.05 | — | — |
广西北海星石② | — | 1637 | 0.85 | 0.290 | 144 | — | — | — |
厂家 | 型号 | 比表面积 /m2·g-1 | 孔容 /cm3·g-1 | 灰分(质量分数)/% | 铁含量② /μg·g-1 | 碳质量分数②/% | 比电容 | |
---|---|---|---|---|---|---|---|---|
/F·g-1 | /F·cm-3 | |||||||
日本可乐丽公司(Kuraray Chemical)[ | YP50F | 1600 | 0.7 | 0.3 | 25 | 95.99 | 28 | 19 |
YP80F | 2100 | 0.94 | 0.5 | — | — | 32 | 18 | |
韩国PCT公司Power Carbon Technology① | CEP21KSN | 1650~1950 | — | <0.1 | 22 | 96.90 | 36.2 | 17.5 |
CEP21KS | 1850~2150 | — | <0.1 | — | — | 37.5 | 18.1 | |
PCT9 | 1850~2050 | — | <0.1 | — | — | 35.6 | 17.1 | |
美国EnerG2① | AeroVolt | 1725 | 0.70~1.30 | <0.02 | — | — | — | — |
斯里兰卡Haycarb② | — | 1572 | 0.83 | 0.012 | 25 | 97.65 | — | — |
河南大潮炭能② | — | 1919 | 0.89 | 0.239 | 199 | 96.33 | — | — |
福建元力② | — | 1705 | 0.43 | 0.127 | 130 | 94.85 | — | — |
浙江阿佩克斯② | — | 1798 | 0.81 | 0.109 | 74 | 97.05 | — | — |
广西北海星石② | — | 1637 | 0.85 | 0.290 | 144 | — | — | — |
1 | 魏颖. 超级电容器关键材料制备及应用[M]. 北京: 化学工业出版社, 2018: 2. |
WEI Ying. Preparation and application of key material for supercapacitor[M]. Beijing: Chemical Industry Press, 2018: 2. | |
2 | LI Qing, XU Yuxia, ZHENG Shasha, et al. Recent progress in some amorphous materials for supercapacitors[J]. Small, 2018, 14(28): e1800426. |
3 | MCCLOSKEY B D. Expanding the Ragone plot: pushing the limits of energy storage[J]. Journal of Physical Chemistry Letters, 2018, 6(18): 3592-3593. |
4 | XIE Lijing, SU Fangyuan, XIE Longfei, et al. Effect of pore structure and doping species on charge storage mechanisms in porous carbon-based supercapacitors[J]. Materials Chemistry Frontiers, 2020, 4(9): 2610-2634. |
5 | LENG Changyu, ZHAO Zhongbin, ZHAO Yinzhou, et al. 3D carbon frameworks for ultrafast charge/discharge rate supercapacitors with high energy-power density[J]. Nano-Micro Letters, 2020, 13(1): 1-11. |
6 | GUO Wei, YU Chang, ZHAO Changtai, et al. Boosting charge storage in 1D manganese oxide-carbon composite by phosphorus-assisted structural modification for supercapacitor applications[J]. Energy Storage Materials, 2020, 31: 172-180. |
7 | HE Xiaojun, ZHANG Nan, SHAO Xiaolong, et al. A layered-template-nanospace-confinement strategy for production of corrugated graphene nanosheets from petroleum pitch for supercapacitors[J]. Chemical Engineering Journal, 2016, 297: 121-127. |
8 | 阮殿波. 动力型双电层电容器: 原理、制造及应用[M]. 北京: 科学出版社, 2018: 48-49. |
RUAN Dianbo. Power double layer capacitor: theory, manufacture and application[M]. Beijing: Science Press, 2018: 48-49. | |
9 | 傅冠生, 曾福娣, 阮殿波. 超级电容器技术在轨道交通行业中的应用[J]. 电力机车与城轨车辆, 2014, 37(2): 1-6. |
FU Guansheng, ZENG Fudi, RUAN Dianbo. Application of super capacitor technology in rail transit industry[J]. Electric Locomotives & Mass Transit Vehicles, 2014, 37(2): 1-6. | |
10 | 陈雪丹, 陈硕翼, 乔志军, 等. 超级电容器的应用[J]. 储能科学与技术, 2016, 5(6): 800-806. |
CHEN Xuedan, CHEN Shuoyi, QIAO Zhijun, et al. Applications of supercapacitors[J]. Energy Storage Science and Technology, 2016, 5(6): 800-806. | |
11 | 荆葛, 阮殿波. 电化学电容器正名[J]. 储能科学与技术, 2020, 9(4): 1009-1014. |
JING Ge, RUAN Dianbo. Electrochemical capacitors clarifying[J]. Energy Storage Science and Technology, 2020, 9(4): 1009-1014. | |
12 | WANG Yanggang, XIA Yongyao. Recent progress in supercapacitors: from materials design to system construction[J]. Advanced Materials, 2013, 25(37): 5336-5342. |
13 | MCCREERY R L. Advanced carbon electrode materials for molecular electrochemistry[J]. Chemical Reviews, 2008, 108(7): 2646-2687. |
14 | KIM M H, KIM K B, PARK S M, et al. Hierarchically structured activated carbon for ultracapacitors[J]. Scientific Reports, 2016, 6: 21182. |
15 | ZHENG Kaiwen, FAN Xiaorong, MAO Yingzhu, et al. The well-designed hierarchical structure of Musa basjoo for supercapacitors[J]. Scientific Reports, 2016, 6:20306-20311. |
16 | CHENG Peng, LI Ting, YU Hang, et al. Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors[J]. Journal of Physical Chemistry C, 2016, 120(4): 2079-2086. |
17 | XU Bin, WU Feng, CHEN Shi, et al. Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors[J].Electrochimica Acta, 2007, 52(13): 4595-4598. |
18 | GAO Wenjun, WAN Ying, DOU Yuqian, et al. Synthesis of partially graphitic ordered mesoporous carbons with high surface areas[J]. Advanced Energy Materials, 2011, 1(1): 115-123. |
19 | YAN Yanfang, CHENG Qilin, ZHU Zhengju, et al. Controlled synthesis of hierarchical polyaniline nanowires/ordered bimodal mesoporous carbon nanocomposites with high surface area for supercapacitor electrodes[J]. Journal of Power Sources, 2013, 240: 544-550. |
20 | MAYER S T, PEKALA R W, KASCHMITTER J L. The aerocapacitor: an electrochemical double-layer energy-storage device[J]. Journal of the Electrochemical Society, 1993, 140(2): 446-451. |
21 | ZHU Jiali, YANG Xi, FU Zhibing, et al. Fabrication of ultra-low density, high surface area carbon aerogels and their application in supercapacitors[J]. Materials Science Forum, 2016, 852: 1349-1355. |
22 | FUTABA D N, HATA K J, YAMADA T, et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature Materials, 2006, 5(12): 987-994. |
23 | ZHANG Hao, CAO Gaoping, WANG Zhiyong, et al. Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability[J]. Electrochemistry Communications, 2008, 10(7): 1056-1059. |
24 | HUANG Yi, LIANG Jiajie, CHEN Yongsheng. An overview of the applications of graphene-based materials in supercapacitors[J]. Small, 2012, 8(12): 1805-1834. |
25 | ZHANG Kai, MAO Lu, ZHANG Lili, et al. Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes[J]. Journal of Materials Chemistry, 2011, 21(20): 7302-7307. |
26 | ZHAO Yang, LIU Jia, HU Yue, et al. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes[J]. Advanced Materials, 2013, 25(4): 591-595. |
27 | HE Xiaojun, ZHANG Hebao, ZHANG Hao, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(46): 19633-19640. |
28 | 国家市场监督管理总局, 国家标准化管理委员会. 超级电容器用活性炭: [S]. 北京: 中国标准出版社, 2019. |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Activated carbon for supercapacitor: [S]. Beijing: Standards Press of China, 2019. | |
29 | GUO Yan, SHI Zhiqiang, CHEN Mingmin, et al. Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors[J]. Journal of Power Sources, 2014, 252: 235-243. |
30 | XU Huan, GAO Qiuming, GUO Hongliang, et al. Hierarchical porous carbon obtained using the template of NaOH-treated zeolite β and its high performance as supercapacitor[J]. Microporous and Mesoporous Materials, 2010, 133(1/2/3): 106-114. |
31 | XIA Kaisheng, GAO Qiuming, JIANG Jinhua, et al. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials[J]. Carbon, 2008, 46(13): 1718-1726. |
32 | MO Shanshan, SUN Zhenfan, HUANG Xiangjin, et al. Synthesis, characterization and supercapacitive properties of hierarchical porous carbons[J]. Synthesis Metals, 2012, 162(1/2): 85-88. |
33 | CHMIOLA J, YUSHIN G, GOGOTSI Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763. |
34 | LARGEOT C, PORTET C, CHMIOLA J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130(9): 2730-2731. |
35 | ZHANG Long, YANG Xi, ZHANG Fan, et al. Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials[J]. Journal of the American Chemical Society, 2013, 135(15): 5921-5929. |
36 | GUO Wei, YU Chang, LI Shaofeng, et al. Toward commercial-level mass-loading electrodes for supercapacitors: opportunities, challenges and perspectives[J]. Energy & Environmental Science, 2021, 14(2): 576-601. |
37 | ZHOU Shaoyun, LI Xinhai, WANG Zhixing, et al. Effect of activated carbon and electrolyte on properties of supercapacitor[J]. Transactions of Nonferrous Metals Socitey of China, 2007, 17(6): 1328-1333. |
38 | CHEN Chengmeng, ZHANG Qiang, YANG Mangguo, et al. Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors[J]. Carbon, 2012, 50(10): 3572-3584. |
39 | CHEN Chengmeng, ZHANG Qiang, ZHAO Xiaochen, et al. Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage[J]. Journal of Materials Chemistry, 2012, 22(28): 14076. |
40 | CHEN Wenzhao, SHI Jingjing, ZHU Ttaishan, et al. Preparation of nitrogen and sulfur dual-doped mesoporous carbon for supercapacitor electrodes with long cycle stability[J]. Electrochimica Acta, 2015, 177: 327-334. |
41 | LOTA G, CENTENO T A, FRACKOWIAK E, et al. Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors[J]. Electrochimica Acta, 2008, 53(5): 2210-2216. |
42 | ANDREAS H A, CONWAY B E. Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs[J]. Electrochimica Acta, 2006, 51(28): 6510-6520. |
43 | LIU Haiyan, SONG Huaihe, CHEN Xiaohong, et al. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors[J]. Journal of Power Sources, 2015, 285: 303-309. |
44 | YUAN Shiting, HUANG Xianhong, WANG Hao, et al. Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance[J]. Journal of Energy Chemistry, 2020, 51: 396-404. |
45 | BI Zhihong, HUO Li, KONG Qingqiang, et al. Structural evolution of phosphorus species on graphene with a stabilized electrochemical interface[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11421-11430. |
46 | WANG Zhefan, YI Zhonglin, AHMAD Aziz, et al. Combined DFT and experiment: stabilizing the electrochemical interfaces via boron Lewis acids[J]. Journal of Energy Chemistry, 2021, 59: 100-107. |
47 | BROUJI El H EL, BRIAT O, VINASSA J M, et al. Analysis of the dynamic behavior changes of supercapacitors during calendar life test under several voltages and temperatures conditions[J]. Microelectronics Reliability, 2009, 49(9/10/11): 1391-1397. |
48 | KOTZ R, RUCH P, CERICOLA D. Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests[J]. Journal of Power Sources, 2010, 195(3): 923-928. |
49 | LIU Kunlun, YU Chang, GUO Wei, et al. Recent research advances of self-discharge in supercapacitors: mechanisms and suppressing strategies[J]. Journal of Energy Chemistry, 2021, 58: 94-109. |
50 | BITTNER A M, ZHU M, YANG Y, et al. Ageing of electrochemical double layer capacitors[J]. Journal of Power Sources, 2012, 203: 262-273. |
51 | GUALOUS H, GALLAY R, ALCICEK G, et al. Supercapacitor ageing at constant temperature and constant voltage and thermal shock[J]. Microelectronics Reliability, 2010, 50(9/10/11): 1783-1788. |
52 | KAZARYAN S A, KHARISOV G G, LITVINENKO S V, et al. Erratum: self-discharge related to iron ions and its effect on the parameters of HES PbO2∣ H2SO4 ∣ C systems[J]. Journal of The Electrochemical Society, 2007, 154(8): A751-A759. |
53 | ANDREAS H A, LUSSIER K, OICKLE A M. Effect of Fe-contamination on rate of self-discharge in carbon-based aqueous electrochemical capacitors[J]. Journal of Power Sources, 2009, 187(1): 275-283. |
54 | 侯敏, 孙康, 邓先伦, 等. 椰壳基超级电容活性炭的制备及其电化学性能研究[J]. 生物质化学工程, 2016, 50(2): 13-18. |
HOU Min, SUN Kang, DENG Xianlun, et al. Preparation and electrochemical performance of coconut shell-based activated carbon for supercapacitor[J]. Biomass Chemical Engineering, 2016, 50(2): 13-18. | |
55 | 杨静, 刘亚菲, 陈晓妹, 等. 高能量密度和功率密度炭电极材料[J]. 物理化学学报, 2008, 24(1): 13-19. |
YANG Jing, LIU Yafei, CHEN Xiaomei, et al. Carbon electrode material with high densities of energy and power[J]. Acta Physico-Chimica Sinica, 2008, 24(1): 13-19. | |
56 | 邢宝林, 张传祥, 谌伦建. 双电层电容器用煤基活性炭的制备与电化学性能表征[J]. 材料导报, 2009, 23(22): 106-109. |
XING Baolin, ZHANG Chuanxiang, CHEN Lunjian. Preparation and electrochemical performance of coal-based activated carbons for electric double layer capacitor[J]. Materials Reports, 2009, 23(22): 106-109. | |
57 | ZHANG Chuanxiang, LONG Donghui, XING Baolin, et al. The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal[J]. Electrochemistry Communications, 2008, 10(11): 1809-1811. |
58 | HE Xiaojun, LI Xiaojing, WU Mingbo, et al. Efficient preparation of porous carbons from coal tar pitch for high performance supercapacitors[J]. New Carbon Materials, 2014, 29(6): 493-502. |
59 | WEI Feng, HE Xiaojun, MA Lianbo, et al. 3D N,O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors[J]. Nano-Micro Letters, 2020, 12(1): 1-12. |
60 | 周颖, 宋晓娜, 舒成, 等. 模板法煤沥青基中孔炭的制备及其电化学性能[J]. 新型炭材料, 2011, 26(3): 187-191. |
ZHOU Ying, SONG Xiaona, SHU Cheng, et al. The electrochemical properties of templated and activated mesoporous carbons produced from coal pitch[J]. New Carbon Materials, 2011, 26(3): 187-191. | |
61 | LI Maoqun, BI Zhihong, SUN Guohua, et al. From starch to carbon materials: insight into the cross-linking reaction and its influence on the carbonization process[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14796-14804. |
62 | LI Feng, AHMAD Aziz, XIE Lijing, et al. Phosphorus-modified porous carbon aerogel microspheres as high volumetric energy density electrode for supercapacitor[J]. Electrochimica Acta, 2019, 318: 151-160. |
63 | CAO Jinhui, ZHU Chunyu, AOKI Yoshitaka, et al. Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7292-7303. |
64 | LONG Conglai, JIANG Lili, WU Xiaoliang, et al. Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors[J]. Carbon, 2015, 93: 412-420. |
65 | 吴明铂. 化学活化法制备活性炭的研究进展[J]. 炭素技术, 1999, 18(4): 19-23. |
WU Mingbo. Advance of research in making actived carbon by chemical activation[J]. Carbon Techniques, 1999, 18(4): 19-23. | |
66 | 杨登莲. 中试超级活性炭制备及注意事项[J]. 石河子科技, 2011(6): 35-38. |
YANG Denglian. Preparation of super active carbon in pilot scale and cautions[J]. Shihezi Science and Technology, 2011(6): 35-38. | |
67 | 刘洪波, 常俊玲, 张红波. 双电层电容器高比表面积活性炭的研究[J]. 电子元件与材料, 2002, 21(2): 19-21, 24. |
LIU Hongbo, CHANG Junling, ZHANG Hongbo. Study on the activated carbon of high specific surface area for electric double-layer capacitors[J]. Electronic Components and Materials, 2002, 21(2): 19-21, 24. | |
68 | 乔文明, 查庆芳, 凌立成, 等. 氧化沥青的活化研究[J]. 炭素技术, 1994, 13(2): 1-4. |
QIAO Wenming, ZHA Qingfang, LING Licheng, et al. The study on activation of oxidized pitch[J]. Carbon Techniques, 1994, 13(2): 1-4. | |
69 | KURZWEIL P, CHWISTEK M. Electrochemical stability of organic electrolytes in superca pacitors: spectroscopy and gas analysis of decomposition products [J]. Journal of Power Sources, 2008, 176(2): 555-567. |
[1] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[2] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[3] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[4] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[5] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[6] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[7] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[8] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[9] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[10] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[11] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[12] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[13] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
[14] | LI Dong, WANG Qianqian, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of series stack of non-aqueous nano slurry thermally regenerative flow batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4238-4246. |
[15] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |