Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 813-823.DOI: 10.16085/j.issn.1000-6613.2020-0687
• Industrial catalysis • Previous Articles Next Articles
Yuanyuan DAI1(), Jie LI2, Zhiwen WANG2, Changsen ZHAO2, Rongyong XIE2()
Received:
2020-04-27
Revised:
2020-07-11
Online:
2021-02-09
Published:
2021-02-05
Contact:
Rongyong XIE
代元元1(), 李杰2, 王志文2, 赵长森2, 解荣永2()
通讯作者:
解荣永
作者简介:
代元元(1990—),女,博士,研究方向为绿色催化工程。E-mail:CLC Number:
Yuanyuan DAI, Jie LI, Zhiwen WANG, Changsen ZHAO, Rongyong XIE. Research progress of mercury-free noble metal catalysts for acetylene hydrochlorination[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 813-823.
代元元, 李杰, 王志文, 赵长森, 解荣永. 乙炔氢氯化反应无汞贵金属催化剂的研究进展[J]. 化工进展, 2021, 40(2): 813-823.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0687
催化剂 | 温度 /℃ | 空速 /h-1 | 运行时间 /h | 转化率 /% | 选择性 /% | 参考文献 |
---|---|---|---|---|---|---|
Au(0.5%)-Cu/AC | 160 | 50 | 200 | 99.5 | 99.5 | [ |
Au(1%)-Sn/AC | 170 | 720 | 48 | 95 | 99 | [ |
Au(0.3%)-Bi/AC | 180 | 600 | 5 | 85 | — | [ |
Au(1%)-Cs/AC | 180 | 50 | 500 | 99.5 | 99.9 | [ |
Au(0.2%)-Cu-K/AC | 165 | 40 | 1600 | 89 | 99.7 | [ |
Au(0.25%)-Cu-Cs/AC | 180 | 50 | 600 | 98.5 | 99.9 | [ |
Au(1%)-In-Cs/AC | 180 | 1480 | 50 | 89.1 | 99.9 | [ |
Au(1%)-Li/AC | 180 | 600 | 48 | 91.3 | 99.9 | [ |
Au(1%)-Ba/AC | 200 | 360 | 86 | 92.3 | 99.9 | [ |
1Au(1.5%)-Ni/CSs | 170 | 900 | 46 | 97 | 99.9 | [ |
催化剂 | 温度 /℃ | 空速 /h-1 | 运行时间 /h | 转化率 /% | 选择性 /% | 参考文献 |
---|---|---|---|---|---|---|
Au(0.5%)-Cu/AC | 160 | 50 | 200 | 99.5 | 99.5 | [ |
Au(1%)-Sn/AC | 170 | 720 | 48 | 95 | 99 | [ |
Au(0.3%)-Bi/AC | 180 | 600 | 5 | 85 | — | [ |
Au(1%)-Cs/AC | 180 | 50 | 500 | 99.5 | 99.9 | [ |
Au(0.2%)-Cu-K/AC | 165 | 40 | 1600 | 89 | 99.7 | [ |
Au(0.25%)-Cu-Cs/AC | 180 | 50 | 600 | 98.5 | 99.9 | [ |
Au(1%)-In-Cs/AC | 180 | 1480 | 50 | 89.1 | 99.9 | [ |
Au(1%)-Li/AC | 180 | 600 | 48 | 91.3 | 99.9 | [ |
Au(1%)-Ba/AC | 200 | 360 | 86 | 92.3 | 99.9 | [ |
1Au(1.5%)-Ni/CSs | 170 | 900 | 46 | 97 | 99.9 | [ |
Au前体配合物 | Au负载量/% | 转化率/% |
---|---|---|
Au[CS(NH2)2]2 | 0.1 | 95 |
Na3Au(S2O3)2 | 0.1 | 86 |
KAu(CN)2 | 0.1 | 85 |
(NH4)3Au(S2O3)2 | 0.1 | 75 |
KAu(SCN)4 | 0.1 | 74 |
Ca3[Au(S2O3)2]2 | 0.1 | 74 |
KAu(CN)4 | 0.1 | 69 |
Au(NCNH2)2 | 0.1 | 55 |
HAuCl4+Aqua regia | 1 | 52 |
HAu(C3Cl3N3O3)3Cl | 1 | 52 |
[Au(P(NCH2CH2OCH2CH2)3)2]NO3 | 1 | 33 |
[(AuCl)2dppe] | 1 | 14 |
[Au(en)2]Cl3 | 1 | 14 |
HAuCl4+H2O | 1 | 11 |
炭黑挤出物(无Au) | 0 | 7 |
Au前体配合物 | Au负载量/% | 转化率/% |
---|---|---|
Au[CS(NH2)2]2 | 0.1 | 95 |
Na3Au(S2O3)2 | 0.1 | 86 |
KAu(CN)2 | 0.1 | 85 |
(NH4)3Au(S2O3)2 | 0.1 | 75 |
KAu(SCN)4 | 0.1 | 74 |
Ca3[Au(S2O3)2]2 | 0.1 | 74 |
KAu(CN)4 | 0.1 | 69 |
Au(NCNH2)2 | 0.1 | 55 |
HAuCl4+Aqua regia | 1 | 52 |
HAu(C3Cl3N3O3)3Cl | 1 | 52 |
[Au(P(NCH2CH2OCH2CH2)3)2]NO3 | 1 | 33 |
[(AuCl)2dppe] | 1 | 14 |
[Au(en)2]Cl3 | 1 | 14 |
HAuCl4+H2O | 1 | 11 |
炭黑挤出物(无Au) | 0 | 7 |
1 | ZHONG J W, XU Y P, LIU Z M. Heterogeneous non-mercury catalysts for acetylene hydrochlorination: progress, challenges, and opportunities[J]. Green Chemistry, 2018, 20: 2412-2427. |
2 | YANG L F, YANG Q W, HU J Y, et al. Metal nanoparticles in ionic liquid-cosolvent biphasic systems as active catalysts for acetylene hydrochlorination[J]. AIChE Journal, 2018, 64(7): 2536-2544. |
3 | 乔贤亮, 关庆鑫, 李伟. 乙炔氢氯化无汞催化剂研究进展[J]. 中国科学:化学, 2019, 49(11): 1385-1400. |
QIAO Xianliang, GUAN Qingxin, LI Wei. Research progress on mercury-free catalysts for acetylene hydrochlorination[J]. Scientia Sinica Chimica, 2019, 49(11): 1385-1400. | |
4 | 申玉海, 朱峰云, 李保瑞, 等. 乙炔氢氯化合成氯乙烯催化剂的研究进展[J]. 工程塑料应用, 2019, 47(5): 153-158. |
SHEN Yuhai, ZHU Fengyun, LI Baorui, et al. Development of researches on catalysts for acetylene hydrochloride to synthesis chloroethylene[J]. Engineering Plastics Application, 2019, 47(5):153-158. | |
5 | SMITH D M, WALSH P M, SLAGER T L. Studies of silica-supported metal chloride catalysts for the vapor-phase hydrochlorination of acetylene[J]. Journal of Catalysis, 1968, 11: 113-130. |
6 | SHINODA K. The vapor-phase hydrochlorination of acetylene over metal chlorides supported on activate carbon[J]. Chemistry Letters, 1975, 219-220. |
7 | NKOSI B, HUTCHINGS G J. Vapour phase hydrochlorination of acetylene with group Ⅷ and ⅠB metal chloride catalysts[J]. Applied Catalysis, 1988, 43: 33-39. |
8 | HUTCHINGS G J. Vapor phase hydrochlorination of acetylene correlation of catalytic activity of supported metal chloride catalysts[J]. Journal of Catalysis, 1985, 96: 292-295. |
9 | CONTE M, CARLEY A F, HEIRENE C, et al. Hydrochlorination of acetylene using a supported gold catalyst: a study of the reaction mechanism[J]. Journal of Catalysis, 2007, 250(2): 231-239. |
10 | MALTA G, KONDRAT S A, FREAKLEY S J, et al. Identification of single-site gold catalysis in acetylene hydrochlorination[J]. Science, 2017, 355: 1399-1403. |
11 | KAISER S K, LIN R, MITCHELL S, et al. Controlling the speciation and reactivity of carbon-supported gold nanostructures for catalysed acetylene hydrochlorination[J]. Chemical Science, 2019, 10(2): 359-369. |
12 | ZHU M Y, WANG Q Q, CHEN K, et al. Development of a heterogeneous non-mercury catalyst for acetylene hydrochlorination[J]. ACS Catalysis, 2015, 5(9): 5306-5316. |
13 | ZHAO J, ZHANG T T, DI X X, et al. Activated carbon supported ternary gold-cesium(Ⅰ)-indium(Ⅲ) catalyst for the hydrochlorination of acetylene[J]. Catalysis Science & Technology, 2015, 5(11): 4973-4984. |
14 | LI G B, LI W, ZHANG J L. Non-mercury catalytic acetylene hydrochlorination over activated carbon-supported Au catalysts promoted by CeO2[J]. Catalysis Science & Technology, 2016, 6(6): 1821-1828. |
15 | HUANG C F, ZHU M Y, KANG L H, et al. Active carbon supported TiO2-AuCl3/AC catalyst with excellent stability for acetylene hydrochlorination reaction[J]. Chemical Engineering Journal, 2014, 242: 69-75. |
16 | XU H Y, LUO J J, XU S Y, et al. Promoter effect of La2O3 on gold catalyst with different textural structures[J]. Journal of Energy Chemistry, 2016, 25(5): 854-860. |
17 | YE L, DUAN X, WU S, et al. Self-regeneration of Au/CeO2 based catalysts with enhanced activity and ultra-stability for acetylene hydrochlorination[J]. Nature Communications, 2019, 10(1): 914. |
18 | CONTE M, CARLEY A, ATTARD G, et al. Hydrochlorination of acetylene using supported bimetallic Au-based catalysts[J]. Journal of Catalysis, 2008, 257(1): 190-198. |
19 | ZHANG H Y, DAI BM WANG X G, et al. Non-mercury catalytic acetylene hydrochlorination over bimetallic Au-Co(iii)/SAC catalysts for vinyl chloride monomer production[J]. Green Chemistry, 2013, 15(3): 829. |
20 | ZHANG H Y, DAI B, LI W, et al. Non-mercury catalytic acetylene hydrochlorination over spherical activated-carbon-supported Au- Co(Ⅲ)-Cu(Ⅱ) catalysts[J]. Journal of Catalysis, 2014, 316: 141-148. |
21 | WANG S J, SHEN B X, SONG Q L. Kinetics of acetylene hydrochlorination over bimetallic Au-Cu/C catalyst[J]. Catalysis Letters, 2009, 134: 102-109. |
22 | DONG Y Z, ZHANG H Y, LI W, et al. Bimetallic Au-Sn/AC catalysts for acetylene hydrochlorination[J]. Journal of Industrial and Engineering Chemistry, 2016, 35: 177-184. |
23 | ZHOU K, WANG W, ZHAO Z, et al. Synergistic gold-bismuth catalysis for non-mercury hydrochlorination of acetylene to vinyl chloride monomer[J]. ACS Catalysis, 2014, 4(9): 3112-3116. |
24 | ZHAO J, XU J T, XU J H, et al. Activated-carbon-supported gold-cesium as highly effective catalysts for hydrochlorination of acetylene to vinyl chloride[J]. ChemPlusChem, 2015, 80(1): 196-201. |
25 | WANG L, SHEN B X, ZHAO J G, et al. Trimetallic Au-Cu-K/AC for acetylene hydrochlorination[J]. The Canadian Journal of Chemical Engineering, 2017, 95(6): 1069-1075. |
26 | ZHAO J, GU S C, XU X L, et al. Promotional effect of copper(Ⅱ) on an activated carbon supported low content bimetallic gold-cesium(Ⅰ) catalyst in acetylene hydrochlorination[J]. RSC Advances, 2015, 5(123): 101427-101436. |
27 | HU D, WANG L, WANG F, et al. Bimetallic Au-Li/SAC catalysts for acetylene hydrochlorination[J]. Catalysis Communications, 2018, 115: 45-48. |
28 | ZHANG H Y, LI W, LI X Q, et al. Non-mercury catalytic acetylene hydrochlorination over bimetallic Au-Ba(Ⅱ)/AC catalysts[J]. Catalysis Science & Technology, 2015, 5(3): 1870-1877. |
29 | PU Y F, ZHANG J L, WANG X, et al. Bimetallic Au-Ni/CSs catalysts for acetylene hydrochlorination[J]. Catalysis Science & Technology, 2014, 4(12): 4426-4432. |
30 | JOHNSTON P, CARTHEY N, HUTCHINGS G J. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination[J]. Journal of the American Chemical Society, 2015, 137(46): 14548-14557. |
31 | XU H, ZHOU K, SI J K, et al. A ligand coordination approach for high reaction stability of an Au-Cu bimetallic carbon-based catalyst in the acetylene hydrochlorination process[J]. Catalysis Science & Technology, 2016, 6(5): 1357-1366. |
32 | ZHAO J, GU S C, XU X L, et al. Supported ionic-liquid-phase-stabilized Au(Ⅲ) catalyst for acetylene hydrochlorination[J]. Catalysis Science & Technology, 2016, 6(9): 3263-3270. |
33 | ZHAO J, YU Y, XU X L, et al. Stabilizing Au(Ⅲ) in supported-ionic-liquid-phase (SILP) catalyst using CuCl2via a redox mechanism[J]. Applied Catalysis B: Environmental, 2017, 206: 175-183. |
34 | YUE Y X, WANG B L, SHENG G F, et al. An ultra-high H2S-resistant gold-based imidazolium ionic liquid catalyst for acetylene hydrochlorination[J]. New Journal of Chemistry, 2019, 43(32): 12767-12775. |
35 | DI X X, ZHAO J, YU Y, et al. One-pot synthesis of nitrogen and sulfur co-doped activated carbon supported AuCl3 as efficient catalysts for acetylene hydrochlorination[J]. Chinese Chemical Letters, 2016, 27(9): 1567-1571. |
36 | ZHU M Y, KANG L H, SU Y, et al. MClx (M=Hg, Au, Ru; x=2,3) catalyzed hydrochlorination of acetylene—A density functional theory study[J]. Canadian Journal of Chemistry, 2013, 91(2): 120-125. |
37 | PU Y F, ZHANG J L, YU L, et al. Active ruthenium species in acetylene hydrochlorination[J]. Applied Catalysis A: General, 2014, 488: 28-36. |
38 | LI G B, LI W, ZHANG H Y, et al. Non-mercury catalytic acetylene hydrochlorination over Ru catalysts enhanced by carbon nanotubes[J]. RSC Advances, 2015, 5(12): 9002-9008. |
39 | HAN Y, SUN M, LI W, et al. Influence of chlorine coordination number on the catalytic mechanism of ruthenium chloride catalysts in the acetylene hydrochlorination reaction: a DFT study[J]. Physical Chemistry Chemical Physics, 2015, 17(12): 7720-7730. |
40 | MAN B C, ZHANG H Y, ZHANG C M, et al. Effect of Ru/Cl ratio on the reaction of acetylene hydrochlorination[J]. New Journal of Chemistry, 2017, 41(23): 14675-14682. |
41 | JIN Y H, LI G B, ZHANG J L, et al. Effects of potassium additive on the activity of Ru catalyst for acetylene hydrochlorination[J]. RSC Advances, 2015, 5(47): 37774-37779. |
42 | ZHANG H Y, LI W, JIN Y H, et al. Ru-Co(Ⅲ)-Cu(Ⅱ)/SAC catalyst for acetylene hydrochlorination[J]. Applied Catalysis B: Environmental, 2016, 189: 56-64. |
43 | GU J J, GAO Y M, ZHANG J L, et al. Hydrochlorination of acetylene catalyzed by an activated carbon-supported ammonium hexachlororuthenate complex[J]. Catalysts, 2017, 7(12): 17. |
44 | LI J, ZHANG H Y, CAI M, et al. Enhanced catalytic performance of activated carbon-supported Ru-based catalysts for acetylene hydrochlorination by azole ligands[J]. Applied Catalysis A: General, 2020, 592: 117431. |
45 | SHANG S S, ZHAO W, WANG Y, et al. Highly efficient Ru@IL/AC to substitute mercuric catalyst for acetylene hydrochlorination[J]. ACS Catalysis, 2017, 7(5): 3510-3520. |
46 | HU J Y, YANG Q W, YANG L F, et al. Confining noble metal (Pd, Au, Pt) nanoparticles in surfactant ionic liquid: active non-mercury catalysts for hydrochlorination of acetylene[J]. ACS Catalysis, 2015, 5(11): 6724-6731. |
47 | KRASNYAKOVA T V, ZHIKHAREV I V, MITCHENKO R S, et al. Acetylene catalytic hydrochlorination over mechanically pre-activated K2PdCl4 salt: a study of reaction mechanism[J]. Journal of Catalysis, 2012, 288: 33-43. |
48 | SONG Q L, WANG S J, SHEN B X, et al. Palladium-based catalysts for the hydrochlorination of acetylene: reason for deactivation and its regeneration[J]. Petroleum Science and Technology, 2010, 28:1825-1833. |
49 | WANG L, WANG F, WANG J. Catalytic properties of Pd/HY catalysts modified with NH4F for acetylene hydrochlorination[J]. Catalysis Communications, 2015, 65: 41-45. |
50 | WANG L, WANG F, WANG J. Enhanced stability of hydrochlorination of acetylene using polyaniline-modified Pd/HY catalysts[J]. Catalysis Communications, 2016, 74: 55-59. |
51 | LI P, DING M Z, HE L M, et al. The activity and stability of PdCl2/C-N catalyst for acetylene hydrochlorination[J]. Science China Chemistry, 2018, 61: 444-448. |
52 | HE H H, ZHAO J, WANG B L, et al. Design strategies for the development of a Pd-based acetylene hydrochlorination catalyst: improvement of catalyst stability by nitrogen-containing ligands[J]. RSC Advances, 2019, 9(37): 21557-21563. |
53 | CEN Y Q, YUE Y X, WANG S S, et al. Adsorption behavior and electron structure engineering of Pd-based catalysts for acetylene hydrochlorination[J]. Catalysts, 2019, 10(1): 24. |
54 | KAISER S K, FAKO E, MANZOCCHI G, et al. Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production[J]. Nature Catalysis, 2020, 3: 376-385. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | LIN Xiaopeng, XIAO Youhua, GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC) [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4770-4782. |
[5] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[6] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[7] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[8] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[9] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[10] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[11] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[12] | YU Shan, DUAN Yuangang, ZHANG Yixin, TANG Chun, FU Mengyao, HUANG Jinyuan, ZHOU Ying. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790. |
[13] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[14] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[15] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |