Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (8): 4259-4267.DOI: 10.16085/j.issn.1000-6613.2020-1767
• Industrial catalysis • Previous Articles Next Articles
ZHANG Donghong(), REN Xiajin, CAI Hongzhen, YI Weiming, LIU Shanjian, LIN Xiaona()
Received:
2020-09-03
Online:
2021-08-12
Published:
2021-08-05
Contact:
LIN Xiaona
张东红(), 任夏瑾, 蔡红珍, 易维明, 柳善建, 林晓娜()
通讯作者:
林晓娜
作者简介:
张东红(1994—),男,硕士研究生,研究方向为生物质能。E-mail:基金资助:
CLC Number:
ZHANG Donghong, REN Xiajin, CAI Hongzhen, YI Weiming, LIU Shanjian, LIN Xiaona. Deactivation of HZSM-5 during the catalytic co-pyrolysis of biomass and plastic[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4259-4267.
张东红, 任夏瑾, 蔡红珍, 易维明, 柳善建, 林晓娜. 生物质/塑料共催化热解过程中HZSM-5失活分析[J]. 化工进展, 2021, 40(8): 4259-4267.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1767
样品 | 工业分析(干燥基)/% | 元素分析(干燥无灰基)/% | |||||
---|---|---|---|---|---|---|---|
灰分 | 挥发分 | 固定碳 | N | C | H | O(差值法) | |
玉米秸秆 | 7.55 | 75.64 | 16.81 | 1.55 | 46.61 | 5.29 | 46.55 |
酸洗玉米秸秆 | 3.15 | 84.28 | 12.57 | 0.48 | 47.91 | 6.01 | 45.6 |
样品 | 工业分析(干燥基)/% | 元素分析(干燥无灰基)/% | |||||
---|---|---|---|---|---|---|---|
灰分 | 挥发分 | 固定碳 | N | C | H | O(差值法) | |
玉米秸秆 | 7.55 | 75.64 | 16.81 | 1.55 | 46.61 | 5.29 | 46.55 |
酸洗玉米秸秆 | 3.15 | 84.28 | 12.57 | 0.48 | 47.91 | 6.01 | 45.6 |
样品 | K/mg·kg-1 | Ca/mg·kg-1 | Na/mg·kg-1 | Mg/mg·kg-1 |
---|---|---|---|---|
玉米秸秆 | 9397 | 2857 | 160 | 1188 |
酸洗玉米秸秆 | 28 | 348 | 39 | 87 |
样品 | K/mg·kg-1 | Ca/mg·kg-1 | Na/mg·kg-1 | Mg/mg·kg-1 |
---|---|---|---|---|
玉米秸秆 | 9397 | 2857 | 160 | 1188 |
酸洗玉米秸秆 | 28 | 348 | 39 | 87 |
样品 | Na/mg·kg-1 | Mg/mg·kg-1 | K/mg·kg-1 | Ca/mg·kg-1 |
---|---|---|---|---|
新鲜 HZSM-5 | 326 | 50 | 38 | 65 |
CS/HDPE共催化热解所用HZSM-5 | ||||
Run 1 | 311 | 159 | 798 | 344 |
Run 5 | 408 | 324 | 2078 | 481 |
再生HZSM-5 | 321 | 350 | 2126 | 580 |
ACS/HDPE共催化热解所用HZSM-5 | ||||
Run 1 | 290 | 40 | 56 | 54 |
Run 5 | 428 | 103 | 99 | 206 |
再生HZSM-5 | 363 | 78 | 143 | 260 |
样品 | Na/mg·kg-1 | Mg/mg·kg-1 | K/mg·kg-1 | Ca/mg·kg-1 |
---|---|---|---|---|
新鲜 HZSM-5 | 326 | 50 | 38 | 65 |
CS/HDPE共催化热解所用HZSM-5 | ||||
Run 1 | 311 | 159 | 798 | 344 |
Run 5 | 408 | 324 | 2078 | 481 |
再生HZSM-5 | 321 | 350 | 2126 | 580 |
ACS/HDPE共催化热解所用HZSM-5 | ||||
Run 1 | 290 | 40 | 56 | 54 |
Run 5 | 428 | 103 | 99 | 206 |
再生HZSM-5 | 363 | 78 | 143 | 260 |
样品 | 比表面积/m2·g-1 | 微孔表面积/m2·g-1 | 外表面积/m2·g-1 | 孔容/cm3·g-1 | 孔径/nm |
---|---|---|---|---|---|
新鲜 HZSM-5 | 383.18 | 261.02 | 122.16 | 0.19 | 2.01 |
CS/HDPE共催化热解所用HZSM-5 | |||||
Run 1 | 227.55 | 170.90 | 56.65 | 0.12 | 2.09 |
Run 5 | 7.55 | 0.92 | 6.63 | 0.01 | 7.59 |
再生HZSM-5 | 390.07 | 268.06 | 122.01 | 0.21 | 2.17 |
ACS/HDPE共催化热解所用HZSM-5 | |||||
Run 1 | 126.82 | 122.15 | 4.67 | 0.06 | 2.10 |
Run 5 | 9.64 | 3.58 | 6.06 | 0.01 | 5.64 |
再生HZSM-5 | 389.28 | 268.67 | 120.61 | 0.21 | 2.16 |
样品 | 比表面积/m2·g-1 | 微孔表面积/m2·g-1 | 外表面积/m2·g-1 | 孔容/cm3·g-1 | 孔径/nm |
---|---|---|---|---|---|
新鲜 HZSM-5 | 383.18 | 261.02 | 122.16 | 0.19 | 2.01 |
CS/HDPE共催化热解所用HZSM-5 | |||||
Run 1 | 227.55 | 170.90 | 56.65 | 0.12 | 2.09 |
Run 5 | 7.55 | 0.92 | 6.63 | 0.01 | 7.59 |
再生HZSM-5 | 390.07 | 268.06 | 122.01 | 0.21 | 2.17 |
ACS/HDPE共催化热解所用HZSM-5 | |||||
Run 1 | 126.82 | 122.15 | 4.67 | 0.06 | 2.10 |
Run 5 | 9.64 | 3.58 | 6.06 | 0.01 | 5.64 |
再生HZSM-5 | 389.28 | 268.67 | 120.61 | 0.21 | 2.16 |
样品 | CS/HDPE共催化热解所用HZSM-5 | ACS/HDPE共催化热解所用HZSM-5 | ||||
---|---|---|---|---|---|---|
弱酸量/mmol·g-1 | 强酸量/mmol·g-1 | 总酸量/mmol·g-1 | 弱酸量/mmol·g-1 | 强酸量/mmol·g-1 | 总酸量/mmol·g-1 | |
新鲜 HZSM-5 | 0.16 | 0.40 | 0.56 | 0.16 | 0.40 | 0.56 |
Run 1 | 0.11 | 0.26 | 0.37 | 0.07 | 0.21 | 0.28 |
Run 5 | 0.10 | 0.08 | 0.18 | 0.09 | 0.14 | 0.23 |
再生 HZSM-5 | 0.12 | 0.26 | 0.38 | 0.10 | 0.37 | 0.47 |
样品 | CS/HDPE共催化热解所用HZSM-5 | ACS/HDPE共催化热解所用HZSM-5 | ||||
---|---|---|---|---|---|---|
弱酸量/mmol·g-1 | 强酸量/mmol·g-1 | 总酸量/mmol·g-1 | 弱酸量/mmol·g-1 | 强酸量/mmol·g-1 | 总酸量/mmol·g-1 | |
新鲜 HZSM-5 | 0.16 | 0.40 | 0.56 | 0.16 | 0.40 | 0.56 |
Run 1 | 0.11 | 0.26 | 0.37 | 0.07 | 0.21 | 0.28 |
Run 5 | 0.10 | 0.08 | 0.18 | 0.09 | 0.14 | 0.23 |
再生 HZSM-5 | 0.12 | 0.26 | 0.38 | 0.10 | 0.37 | 0.47 |
1 | SHAO Shanhan, ZHANG Huiyan, XIAO Rui, et al. Evolution of coke in the catalytic conversion of biomass-derivates by combined in-situ DRIFTS and ex-situ approach: effect of functional structure[J]. Fuel Processing Technology, 2018, 178: 88-97. |
2 | 王洋, 董长青. 生物质燃烧和热解中钾的释放规律研究进展[J]. 化工进展, 2020, 39(4): 1292-1301. |
WANG Yang, DONG Changqing. Release of K during biomass combustion and pyrolysis:a review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1292-1301. | |
3 | Tomás CORDERO-LANZAC, PALOS Roberto, ARANDES José María, et al. Stability of an acid activated carbon based bifunctional catalyst for the raw bio-oil hydrodeoxygenation[J]. Applied Catalysis B: Environmental, 2017, 203: 389-399. |
4 | 王敬茹, 姚宗路, 丛宏斌, 等. 生物质炭催化玉米秸秆热解气重整提质研究[J]. 农业工程学报, 2019, 35(16): 258-264. |
WANG Jingru, YAO Zonglu, CONG Hongbin, et al. Upgrading biomass pyrolysis gas from corn stalk by charcoal catalytic reforming[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16): 258-264. | |
5 | HU Changsong, XIAO Rui, ZHANG Huiyan. Ex-situ catalytic fast pyrolysis of biomass over HZSM-5 in a two-stage fluidized-bed/fixed-bed combination reactor[J]. Bioresource Technology, 2017, 243: 1133-1140. |
6 | BARTHOLOMEW Calvin H. Mechanisms of catalyst deactivation[J]. Applied Catalysis A: General, 2001, 212: 17-60. |
7 | 郭慧敏, 李翔宇, 王海彦, 等. 纤维素和聚丙烯共催化热解热重分析及动力学研究[J]. 太阳能学报, 2017, 38: 2705-2711. |
GUO Huimin, LI Xiangyu, WANG Haiyan, et al. Thermogravimetric analysis and kinetics of co-catalytic pyrolysis of cellulose and polypropylene blends[J]. Acta Energiae Solaris Sinica, 2017, 38: 2705-2711. | |
8 | XUE Yuan, KELKAR Atul, BAI Xianglan. Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer[J]. Fuel, 2016, 166: 227-236. |
9 | LI Xiangyu, ZHANG Haifeng, LI Jian, et al. Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene[J]. Applied Catalysis A: General, 2013, 455: 114-121. |
10 | In Yong EOM, KIM Jae Young, KIM Tae Seung, et al. Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass[J]. Bioresource Technology, 2012, 104: 687-694. |
11 | Qitai ERI, ZHAO Xinjun, RANGANATHAN Panneerselvam, et al. Numerical simulations on the effect of potassium on the biomass fast pyrolysis in fluidized bed reactor[J]. Fuel, 2017, 197: 290-297. |
12 | Güray YILDIZ, RONSSE Frederik, VENDERBOSCH Robbie, et al. Effect of biomass ash in catalytic fast pyrolysis of pine wood[J]. Applied Catalysis B: Environmental, 2015, 168/169: 203-211. |
13 | MULLEN Charles A, BOATENG Akwasi A. Accumulation of inorganic impurities on HZSM-5 zeolites during catalytic fast pyrolysis of switchgrass[J]. Industrial & Engineering Chemistry Research, 2013, 52: 17156-17161. |
14 | XUE Yuan, BAI Xianglan. Synergistic enhancement of product quality through fast co-pyrolysis of acid pretreated biomass and waste plastic[J]. Energy Conversion and Management, 2018, 164: 629-638. |
15 | HERNANDO Héctor, Sergio JIMENEZ-SANCHEZ, FERMOSO Javier, et al. Assessing biomass catalytic pyrolysis in terms of deoxygenation pathways and energy yields for the efficient production of advanced biofuels[J]. Catalysis Science & Technology, 2016, 6: 2829-2843. |
16 | LIU Changjun, WANG Huamin, KARIM Ayman M, et al. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chemical Society Reviews, 2014, 43: 7594-7623. |
17 | PARK Young Kwon, SIDDIQUI Muhammad, KANG Yejin, et al. Increased aromatics formation by the use of high-density polyethylene on the catalytic pyrolysis of mandarin peel over HY and HZSM-5[J]. Catalysts, 2018, 8: 656. |
18 | 武杰. 烃分子动力学直径与分子筛择形催化性能的相关性[J]. 化工进展, 2016, 35(S1): 167-173. |
WU Jie. Research on the correlation between dynamic diameters of hydrocarbon molecules and zeolites shape-selective catalytic performance[J]. Chemical Industry and Engineering Progress, 2016, 35(S1): 167-173. | |
19 | KALOGIANNIS Konstantinos G, STEFANIDIS Stylianos D, KARAKOULIA Stamatia A, et al. First pilot scale study of basic vs acidic catalysts in biomass pyrolysis: deoxygenation mechanisms and catalyst deactivation[J]. Applied Catalysis B: Environmental, 2018, 238: 346-357. |
20 | MULLEN Charles A, DORADO Christina, BOATENG Akwasi A. Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5: catalyst deactivation and coke formation[J]. Journal of Analytical and Applied Pyrolysis, 2018, 129: 195-203. |
21 | KALOGIANNIS Konstantinos G, STEFANIDIS Stylianos D, LAPPAS Angelos A. Catalyst deactivation, ash accumulation and bio-oil deoxygenation during ex situ catalytic fast pyrolysis of biomass in a cascade thermal-catalytic reactor system[J]. Fuel Processing Technology, 2019, 186: 99-109. |
22 | 尉东光, 周敬来, 张碧江. 焙烧对HZSM-5分子筛结构的影响[J]. 分子催化, 1996, 10: 445-448. |
WEI Dongguang, ZHOU Jinglai, ZHANG Bijiang. The influence of calcination on the structure of HZSM-5[J]. Journal of Molecular Catalysis, 1996, 10: 445-448. | |
23 | PERSSON Henry, DUMAN I, WANG Shule, et al. Catalytic pyrolysis over transition metal-modified zeolites: a comparative study between catalyst activity and deactivation[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138: 54-61. |
24 | MA Zhingqiang, TROUSSARD Ekaterina, BOKHOVEN Jeroen A. Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis[J]. Applied Catalysis A: General, 2012, 423/424: 130-136. |
25 | SAMOLADA M C, PAPAFOTICA A, VASALOS I A. Catalyst evaluation for catalytic biomass pyrolysis[J]. Energy & Fuels, 2000, 14: 1161-1167. |
26 | 唐松山, 泮泽优, 张长森, 等. 碱改性HZSM-5催化热解木质素催化剂失活分析[J]. 化工学报, 2017, 68(12): 4739-4749. |
TANG Songshan, PAN Zeyou, ZHANG Changsen, et al. Deactivation analysis of catalyst for modified HZSM-5 catalytic lignin pyrolysis[J]. CIESC Journal, 2017, 68(12): 4739-4749. | |
27 | GAYUBO Aguayo G, AGUAYO Andrés T, ATUTXA Alaitz, et al. Deactivation of a HZSM-5 zeolite catalyst in the transformation of the aqueous fraction of biomass pyrolysis oil into hydrocarbons[J]. Energy & Fuels, 2004, 18: 1640-1647. |
28 | 尹海云, 李小华, 张蓉仙, 等. HZSM-5在线提质生物油及催化剂失活机理分析[J]. 燃料化学学报, 2014, 42(9): 1077-1086. |
YIN Haiyun, LI Xiaohua, ZHANG Rongxian, et al. Online catalytic cracking of bio-oil over HZSM-5 zeolite and analysis of catalyst deactivation[J]. Journal of Fuel Chemistry and Technology, 2014, 42(9): 1077-1086. |
[1] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[2] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[3] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[4] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[5] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[6] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[7] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[8] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[9] | YAO Liming, WANG Yazhuo, FAN Honggang, GU Qing, YUAN Haoran, CHEN Yong. Treatment status of kitchen waste and its research progress of pyrolysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3791-3801. |
[10] | ZHANG Shan, ZHONG Zhaoping, YANG Yuxuan, DU Haoran, LI Qian. Enrichment of heavy metals in pyrolysis of municipal solid waste by phosphate modified kaolin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3893-3903. |
[11] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing biofuels from soapstock via pyrolysis and subsequent catalytic vapor-phase hydrotreating process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2874-2883. |
[12] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[13] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[14] | LI Ruolin, HE Shaolin, YUAN Hongying, LIU Boyue, JI Dongli, SONG Yang, LIU Bo, YU Jiqing, XU Yingjun. Effect of in-situ pyrolysis on physical properties of oil shale and groundwater quality [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3309-3318. |
[15] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |