Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (1): 195-204.DOI: 10.16085/j.issn.1000-6613.2020-0541
• Industrial catalysis • Previous Articles Next Articles
Junjie CHU(), Jie CHANG, Zhibin LUO, Mingming HOU, Qian LI()
Received:
2020-04-08
Online:
2021-01-12
Published:
2021-01-05
Contact:
Qian LI
通讯作者:
李谦
作者简介:
褚俊杰(1991—),男,硕士研究生,研究方向为催化过程工程。E-mail:基金资助:
CLC Number:
Junjie CHU, Jie CHANG, Zhibin LUO, Mingming HOU, Qian LI. Research progress on absorption and conversion of ethylene oxide to ethylene carbonate[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 195-204.
褚俊杰, 常洁, 罗志斌, 侯明明, 李谦. 环氧乙烷吸收和转化合成碳酸酯工艺研究进展[J]. 化工进展, 2021, 40(1): 195-204.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0541
催化剂 | 反应条件 | 转化率 /% | ||
---|---|---|---|---|
温度 /℃ | 压力 /MPa | 时间 /h | ||
铬(Ⅲ)希夫碱配合物[ | 75 | 6.8 | 1.5 | 100 |
胺-双(酚基)钴(Ⅱ)[ | 80 | 5 | 18 | 95 |
双核铝配合物[ | 100 | 1 | 18 | 100 |
铝(salphen)配合物[ | 50 | 1 | 24 | 96 |
铝-脂肪族复合物[ | 70 | 1 | 13 | 99.6 |
铝-卟啉配合物[ | 25 | 3 | 48 | 99 |
二元Al-络合物/ PPNCl[ | 70 | 1 | 24 | 99 |
NNO-异蝎形铝配合物[ | 50 | 0.1 | 24 | 100 |
铝(希夫碱)配合物[ | 25 | 1 | 24 | 89 |
蝎形铝配合物[ | 50 | 1 | 24 | 100 |
铝-氯化铝配合物[ | 35 | 1 | 24 | 100 |
铝-β-氨基醇配合物[ | 25 | 0.1 | 8 | 99 |
铝-脒基配合物[ | 25 | 0.1 | 24 | 100 |
铁吡啶基氨基双(酚类)配合物[ | 85 | 8 | 3 | 99 |
双核的铁(Ⅲ)复合物[ | 120 | 2 | 1 | 76 |
铁(Ⅲ)-氨基甲酸盐配合物[ | 25 | 0.1 | 24 | 99 |
单核铁(Ⅲ)配合物[ | 50 | 1 | 24 | 87 |
硫醚-三酚铁(Ⅲ)配合物[ | 100 | 2 | 6 | 95 |
双(苯氧基亚氨基)铁(Ⅲ)-氯复合体配合物[ | 130 | 5 | 5 | 95 |
锌、铜、铁超分子配合物[ | 145 | 1 | 3 | 89 |
催化剂 | 反应条件 | 转化率 /% | ||
---|---|---|---|---|
温度 /℃ | 压力 /MPa | 时间 /h | ||
铬(Ⅲ)希夫碱配合物[ | 75 | 6.8 | 1.5 | 100 |
胺-双(酚基)钴(Ⅱ)[ | 80 | 5 | 18 | 95 |
双核铝配合物[ | 100 | 1 | 18 | 100 |
铝(salphen)配合物[ | 50 | 1 | 24 | 96 |
铝-脂肪族复合物[ | 70 | 1 | 13 | 99.6 |
铝-卟啉配合物[ | 25 | 3 | 48 | 99 |
二元Al-络合物/ PPNCl[ | 70 | 1 | 24 | 99 |
NNO-异蝎形铝配合物[ | 50 | 0.1 | 24 | 100 |
铝(希夫碱)配合物[ | 25 | 1 | 24 | 89 |
蝎形铝配合物[ | 50 | 1 | 24 | 100 |
铝-氯化铝配合物[ | 35 | 1 | 24 | 100 |
铝-β-氨基醇配合物[ | 25 | 0.1 | 8 | 99 |
铝-脒基配合物[ | 25 | 0.1 | 24 | 100 |
铁吡啶基氨基双(酚类)配合物[ | 85 | 8 | 3 | 99 |
双核的铁(Ⅲ)复合物[ | 120 | 2 | 1 | 76 |
铁(Ⅲ)-氨基甲酸盐配合物[ | 25 | 0.1 | 24 | 99 |
单核铁(Ⅲ)配合物[ | 50 | 1 | 24 | 87 |
硫醚-三酚铁(Ⅲ)配合物[ | 100 | 2 | 6 | 95 |
双(苯氧基亚氨基)铁(Ⅲ)-氯复合体配合物[ | 130 | 5 | 5 | 95 |
锌、铜、铁超分子配合物[ | 145 | 1 | 3 | 89 |
1 | 张玉宝. 碳酸乙烯酯的性质与应用[J]. 沈阳师范大学学报(自然科学版), 1997(4): 46-48. |
ZHANG Yubao. The properties and applications of ethylene carbonate[J]. Journal of Shenyang Normal University (Natural Science Edition), 1997(4): 46-48. | |
2 | PAYNE R, THEODOROU I E. Dielectric properties and relaxation in ethylene carbonate and propylene carbonate[J]. The Journal of Physical Chemistry, 1972, 76(20): 2892-2900. |
3 | 程玲, 周建成, 吴东方. 碳酸乙烯酯的合成及应用进展[J]. 精细石油化工进展, 2008, 9(12): 44-52. |
CHENG Ling, ZHOU Jiancheng, WU Dongfang. Progress in the synthesis and application of ethylene carbonate[J]. Progress in Fine Petrochemicals, 2008, 9(12): 44-52. | |
4 | 陈向华, 孙凯. EO的生产方法及应用[J]. 化工科技市场, 2008, 31(10): 33-36. |
CHEN Xianghua, SUN Kai. Production method and application of EO[J]. Chemical Technology Market, 2008, 31(10): 33-36. | |
5 | BUKHTIYAROV V I, KNOP-GERICKE A. Ethylene epoxidation over silver catalysts[M]//HESS C, SCHLÖGL R. Nanostructured Catalysts: Selective Oxidations, Knovel, 2011: 214-247. |
6 | 姚小利, 姚虎卿, 堵文斌. 活性炭变压吸附回收环氧乙烷装置排放气中的乙烯[J]. 化工进展, 2003, 22(9): 969-972. |
YAO Xiaoli, YAO Huqing, DU Wenbin. Recovering ethylene from vent gas of ethylene oxide plant by activated carbon with process[J]. Chemical Industry and Engineering Progress, 2003, 22(9): 969-972. | |
7 | GUMEROV F M, SABIRZYANOV A N, GUMEROVA G I, et al. Separation of ethylene oxide from its aqueous solution by supercritical fluid extraction[J]. Theoretical Foundations of Chemical Engineering, 2006, 40(3): 265-269. |
8 | OZERO B I. Process for the recovery of ethylene oxide: US3964980[P]. 1976-06-22. |
9 | 布莱恩·奥佐罗. 改进的EO回收方法: CN101952268[P]. 2013-10-30. |
OZERO B. Improvement of EO recovery method: CN101952268[P]. 2013-10-30. | |
10 | B·贝斯林, H·哈瑟, J·普吕克汉, 等. 通过蒸馏提纯环氧乙烷的方法: CN1290837C[P]. 2006-12-20. |
BESLIN B, HASSE H, PLUKHAN J, et al. Method of purifying ethylene oxide by distillation: CN1290837C[P]. 2006-12-20. | |
11 | 斯特德维泽, 奥斯本, 德弗, 等. 环氧烷纯化方法和系统: CN105148551A[P]. 2015-12-16. |
STADLWIESER K P, OSBORNE B B, DEVER J P, et al. Method and system for purification of alkylene oxide: CN105148551A[P]. 2015-12-16. | |
12 | 张军, 刘士达, 潘晓宏, 等. 一种环氧乙烷装置用吸收系统: CN206473984U[P]. 2017-09-08. |
ZHANG Jun, LIU Shida, PAN Xiaohong, et al. An absorption system for ethylene oxide devices: US206473984U[P]. 2017-09-08. | |
13 | 耿鹏. 一种环氧乙烷吸收回收装置: CN209060854U[P]. 2019-07-05. |
GENG Peng. Ethylene oxide absorbing and recycling device: CN209060854U[P]. 2019-07-05. | |
14 | LIU Jingru, ZHANG Fan, XU Wei, et al. Thermal reactivity of ethylene oxide in contact with contaminants: a review[J]. Thermochimica Acta, 2017, 652: 85-96. |
15 | GIOACCHINO C, BENEDETTO C, GIANNI J. Process for the simultaneous separation of ethylene oxide and carbon dioxide from the gaseous mixtures obtained in the direct oxidation of ethylene with oxygen: US3948621[P]. 1976-04-06. |
16 | DALE A R, OLIVER C A. Ethylene carbonate process: US4233221[P]. 1980-11-11. |
17 | KAZUKI K, KAZUHIKO M, TOSHIYUKI F. Method of recovery ethylene oxide: US5559255[P]. 1996-09-24. |
18 | 陈玮娜. 以碳酸乙烯酯为吸收剂吸收环氧乙烷的方法[J]. 化工技术与开发, 2013(10): 34-36. |
CHEN Weina. Method of absorbing ethylene oxide with ethylene carbonate as absorbent[J]. Chemical Technology and Development, 2013(10): 34-36. | |
19 | 李骏, 杨为民, 何文军. 环氧乙烷纯化方法: CN109422708A[P]. 2019-03-05. |
LI Jun, YANG Weimin, HE Wenjun. Purification method of ethylene oxide: CN109422708A[P]. 2019-03-05. | |
20 | 成卫国, 褚俊杰, 董丽, 等. 一种复合吸收剂及其用于环氧乙烷分离纯化的方法: CN110479037A[P]. 2019-11-22. |
CHENG Weiguo, CHU Junjie, DONG Li, et al. A composite absorbent used in the separation and purification of ethylene oxide: CN110479037A[P]. 2019-11-22. | |
21 | YANG Zhenzhen, ZHAO Yanan, He Liangnian. CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion[J]. ChemInform, 2011, 43(4): 545-567. |
22 | ALVES M, GRIGNARD B, MEREAU R, et al. Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: catalyst design and mechanistic studies[J]. Catalysis Science & Technology, 2017, 7(13): 2651-2684. |
23 | YAMAGUCHI K, EBITANI K, YOSHIDA T, et al. ChemInform abstract: Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides[J]. Journal of the American Chemical Society, 1999, 121(18): 4526-4527. |
24 | DAI Weili, YIN Shuangfeng, GUO Rui, et al. Synthesis of propylene carbonate from carbon dioxide and propylene oxide using Zn-Mg-Al composite oxide as high-efficiency catalyst[J]. Catalysis Letters, 2010, 136(1/2): 35-44. |
25 | WANG Yanyan, LI Shaopeng, YANG Youdi, et al. A fully heterogeneous catalyst Br-LDH for the cycloaddition reactions of CO2 with epoxides[J]. Chemical Communications, 2019, 55(48): 6942-6945. |
26 | CALO V, NACCI A, MONOPOLI A, et al. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts[J]. Cheminform, 2002, 33(48): 2561-2563. |
27 | SUN J, WANG L, ZHANG S, et al. ZnCl2/phosphonium halide: an efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate[J]. Journal of Molecular Catalysis A: Chemical, 2006, 256(1/2): 295-300. |
28 | KIM H S, BAE J, LEE J S, et al. Phosphine-bound zinc halide complexes for the coupling reaction of ethylene oxide and carbon dioxide[J]. Journal of Catalysis, 2005, 232(1): 80-84. |
29 | KUMATABARA Y, OKADA M, SHIRAKAWA S. Triethylamine hydroiodide as a simple yet effective bifunctional catalyst for CO2, fixation reactions with epoxides under mild conditions[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7295-7301. |
30 | ZHOU Hui, WANG Guoxu, ZHANG Wenzhen, et al. CO2 adducts of phosphorus ylides: highly active organocatalysts for carbon dioxide transformation[J]. ACS Catalysis, 2015, 5(11): 6773-6779. |
31 | SONG J, ZHANG Z, HU S, et al. MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions[J]. Cheminform, 2009, 11(7):1031-1036. |
32 | ROKICKI G, KURAN W. Cyclic carbonates from carbon dioxide and oxiranes[J]. Monatshefte fuer Chemie, 1984, 115(2): 205-214. |
33 | GHOSH A, RAMIDI P, PULLA S, et al. Cycloaddition of CO2 to epoxides using a highly active Co() complex of tetraamidomacrocyclic ligand[J]. Catalysis Letters, 2010, 137(1/2): 1-7. |
34 | RAMIDI P, MUNSHI P, GARTIA Y, et al. Synergistic effect of alkali halide and Lewis base on the catalytic synthesis of cyclic carbonate from CO2 and epoxide[J]. Chemical Physics Letters, 2011, 512(4/5/6): 273-277. |
35 | PADDOCK R L, NGUYEN S T. Chemical CO2 fixation: Cr(Ⅲ) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides[J]. Journal of the American Chemical Society, 2001, 123(46): 11498-11499. |
36 | REITER M, ALTENBUCHNER P T, KISSLING S, et al. Amine-bis(phenolato) cobalt(Ⅱ) catalysts for the formation of organic carbonates from carbon dioxide and epoxides[J]. European Journal of Inorganic Chemistry, 2015, 10: 1766-1774. |
37 | RINTJEMA J, KLEIJ A W. Aluminum-mediated formation of cyclic carbonates: benchmarking catalytic performance metrics[J]. ChemSusChem, 2017, 10(6): 1274-1282. |
38 | WU Xiao, NORTH M. A bimetallic aluminium (salphen) complex for the synthesis of cyclic carbonates from epoxides and carbon dioxide[J]. ChemSusChem, 2016, 10(1): 74-78. |
39 | KIM So Han, HAN Sang Yeop, KIM Jeong Hee, et al. Monomeric or dimeric aluminum complexes as catalysts for cycloaddition between CO2 and epoxides[J]. European Journal of Inorganic Chemistry, 2015, 13: 2323-2329. |
40 | ZHUO Chunwei, QIN Yusheng, WANG Xianhong, et al. Temperature-responsive catalyst for the coupling reaction of carbon dioxide and propylene oxide[J]. Chinese Journal of Chemistry, 2018, 36(4): 299-305. |
41 | PEÑA C L, FRAILE C. Fatty acid based biocarbonates: Al-mediated stereoselective preparation of mono-, di- and tricarbonates under mild and solvent-less conditions[J]. Green Chemistry, 2017, 19(15): 3535-3541. |
42 | MARTÍNEZ J, CASTRO-OSMA J A, ALONSO-MORENO C, et al. One-component aluminium (heteroscorpionate) catalysts for the formation of cyclic carbonates from epoxides and carbon dioxide[J]. ChemSusChem, 2016, 10(6): 1175-1185. |
43 | CASTRO-OSMA J A, NORTH M, WU Xiao. Development of a halide-free aluminium-based catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide[J]. Chemistry: A European Journal, 2014, 20(46): 15005-15008. |
44 | CASTRO-OSMA J A, ALONSO-MORENO C, LARA-SÁNCHEZ A, et al. Synthesis of cyclic carbonates catalysed by aluminium heteroscorpionate complexes[J]. Catal. Sci. Technol. Chem. Eur. J., 2015, 21(27): 9850-9862 |
45 | RULEV Y A, ZALINA G, MALEEV V I, et al. Robust bifunctional aluminium-salen catalysts for the preparation of cyclic carbonates from carbon dioxide and epoxides[J]. Beilstein Journal of Organic Chemistry, 2015, 11(49): 1614-1623. |
46 | VERMA S, SI M K, KURESHY R I. Chemical fixation of CO2 to cyclic carbonates using Al(Ⅲ) β-aminoalcohol based efficient catalysts: an experimental and computational studies[J]. Journal of Molecular Catalysis A: Chemical, 2016, 417(11): 135-144. |
47 | MELÉNDEZ D O, LARA-SÁNCHEZ A, MARTÍNEZ J. Amidinate aluminium complexes as catalysts for carbon dioxide fixation into cyclic carbonates[J]. ChemCatChem, 2018, 10(10): 2271-2277. |
48 | TAHERIMEHR M, SERT J P C C, KLEIJ A W, et al. New iron pyridylamino-bis(phenolate) catalyst for converting CO2 into cyclic carbonates and cross-linked polycarbonates[J]. ChemSusChem, 2015, 8(6): 1034-1042. |
49 | MONICA F D, VUMMALETI S V C, BUONERBA A, et al. Coupling of carbon dioxide with epoxides efficiently catalyzed by thioether-triphenolate bimetallic iron(Ⅲ) complexes SI[J]. Advanced Synthesis & Catalysis, 2016, 358(20): 3231-3243. |
50 | GUIDO P, GIULIO B, MARCO B, et al. Iron() N,N-dialkylcarbamates catalyze the formation of cyclic carbonates from carbon dioxide and epoxides at ambient conditions via dynamic CO2 trapping as carbamato ligand[J]. ChemSusChem, 2018, 11(16): 2737-2743. |
51 | FRANCESCO D M, BHOLANATH M, THOMAS P. [OSSO]-type iron() complexes for the low-pressure reaction of carbon dioxide with epoxides: catalytic activity, reaction kinetics and computational study[J]. ACS Catalysis, 2018, 8(8): 6882-6893. |
52 | BUONERBA A, DE NISI A, GRASSI A, et al. Novel iron(Ⅲ) catalyst for the efficient and selective coupling of carbon dioxide and epoxides to cyclic carbonates[J]. Catalysis Science & Technology, 2015, 5(1): 118-123. |
53 | AL-QAISI, FEDA A, GENJANG N, et al. Synthesis, structure and catalytic activity of bis(phenoxyiminato) iron() complexes in coupling reaction of CO2 and epoxides[J]. Inorganica Chimica Acta, 2016, 442: 81-85. |
54 | PENG Jing, YANG Haijian, GENG Yongchao, et al. Novel recyclable supramolecular metal complexes for the synthesis of cyclic carbonates from epoxides and CO2 under solvent-free conditions[J]. Journal of CO2 Utilization, 2017, 17: 243-255. |
55 | 张锁江. 离子液体: 从基础研究到工业应用[M]. 北京: 化学工业出版社, 2006. |
ZHANG Suojiang. Ionic liquids: from basic research to industrial applications[M]. Beijing: Chemical Industry Press, 2006. | |
56 | 费腾, 张延强, 杜耀, 等. 自燃离子液体的研究进展[J]. 含能材料, 2016, 10(24): 1017-1028. |
FEI Teng, ZHANG Yanqiang, DU Yao, et al. Review on hypergolic ionic liquids[J]. Chinese Journal of Energetic Materials, 2016, 10(24): 1017-1028. | |
57 | SONG Jinliang, ZHANG Binbin, ZHANG Peng, et al. Highly efficient synthesis of cyclic carbonates from CO2 and epoxides catalyzed by KI/lecithin[J]. Catalysis Today, 2012, 183(1): 130-135. |
58 | PENG Jiajian, DENG Youquan. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids[J]. New Journal of Chemistry, 2001, 25(4): 639-641. |
59 | SUN Jian, ZHANG Suojiang, CHENG Weiguo, et al. Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate[J]. Tetrahedron Letters, 2008, 49(22): 3588-3591. |
60 | SUN Jian, CHENG Weiguo, ZHANG Suojiang, et al. Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2[J]. Catalysis Today, 2009, 148: 361-367. |
61 | ZHOU Yinxi, HU Suqin, MA Xiumin, et al. Synthesis of cyclic carbonates from carbon dioxide and epoxides over betaine-based catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2008, 284(1/2): 52-57. |
62 | ZHANG Yuanyuan, YIN Shuangfeng, LUO Shenglian, et al. Cycloaddition of CO2 to epoxides catalyzed by carboxyl-functionalized imidazoliumbased ionic liquid grafted onto cross-linked polymer[J]. Industrial & Engineering Chemistry Research, 2012, 51: 3951-3957. |
63 | HAN Lina, CHOI Hye-Ji, CHOI Soo-Jin, et al. Ionic liquids containing carboxyl acid moieties grafted onto silica: synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide[J]. Green Chemistry, 2011, 13(4): 1023-1028. |
64 | RAJENDRA B. Synergistic effect of a binary ionic liquid/base catalytic system for efficient conversion of epoxide and carbon dioxide into cyclic carbonates[J]. Journal of CO2 Utilization, 2019, 33: 284-291. |
65 | LIU Ning, XIE Yafei, WANG Chuan, et al. Cooperative multi-functional organocatalysts for ambient conversion of carbon dioxide into cyclic carbonates[J]. ACS Catalysis, 2018, 8: 9945-9957. |
66 | HU Jiayin, MA Jun, LIU Huizhen, et al. Dual-ionic liquid system: an efficient catalyst for chemical fixation of CO2 to cyclic carbonates under mild conditions[J]. Green Chemistry, 2018, 20(13): 2990-2994. |
67 | LIU Fusheng, GU Yongqiang, ZHAO Penghui. Cooperative conversion of CO2 to cyclic carbonates in dual-ionic ammonium salts catalytic medium at ambient temperature[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5940-5945. |
68 | SHI Lijuan, XU Shaobo, ZHANG Qiri, et al. Ionic liquid/quaternary ammonium salt integrated heterogeneous catalytic system for the efficient coupling of carbon dioxide with epoxides[J]. Industrial & Engineering Chemistry Research, 2018, 57(45): 15319-15328. |
69 | 刘雪静, 吕庆霖, 别福生. 一种环氧乙烷装置联产碳酸乙烯酯的方法: CN 108467383A[P]. 2018-08-31. |
LIU Xuejing, Qinglin LYU, BIE Fusheng. A method for producing ethylene carbonate by coupling of ethylene oxide absorption device: CN 108467383A[P]. 2018-08-31. | |
70 | 成卫国, 董丽, 褚俊杰, 等. 一种复合吸收剂及其用于环氧乙烷吸收转化耦合联产碳酸乙烯酯的方法: CN 201910785196.2[P]. 2019-11-12. |
CHENG Weiguo, DONG Li, CHU Junjie, et al. Absorbents for ethylene oxide absorption and conversion coupling production of ethylene carbonate: CN 201910785196.2[P]. 2019-11-12. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[4] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[5] | LI Jitong, WANG Gang, XIONG Yaxuan, XU Qian. Energy and exergy analysis of single-effect absorption refrigeration system with different refrigerants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 104-112. |
[6] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[7] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[8] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[9] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[10] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[11] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[12] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[15] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |