1 | DAI X H, YAN H, LI N, et al. Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge[J]. Scientific Reports, 2016, 6: 28193. | 2 | CHEN S S, LI N, DONG B, et al. New insights into the enhanced performance of high solid anaerobic digestion with dewatered sludge by thermal hydrolysis: organic matter degradation and methanogenic pathways[J]. Journal of Hazardous Materials, 2018, 342: 1-9. | 3 | SHAO L M, HE P P, YU G H, et al. Effect of proteins, polysaccharides, and particle sizes on sludge dewaterability[J]. Journal of Environmental Sciences, 2009, 21(1): 83-88. | 4 | WU B, NI B J, HORVAT K, et al. Occurrence state and molecular structure analysis of extracellular proteins with implications on the dewaterability of waste-activated sludge[J]. Environmental Science & Technology, 2017, 51(16): 9235-9243. | 5 | PRINS R A. Biochemical activities of gut microorganisms[J]. Microbial Ecology of the Gut, 1977. | 6 | MCINERNY M J. Anaerobic hydrolysis and fermentation of fats and proteins, AJB zehender (Ed.), biology of anaerobic microorganisms [D]. Oklahoma: University of Oklahoma,1988. | 7 | 胡玉婷. 植物活性成分与蛋白质的结合性质及对蛋白质结构的影响[D]. 南昌: 南昌大学, 2014.HU Y T. The binding properties of plant active ingredients and proteins and their effects on protein structure [D]. Nanchang: Nanchang University, 2014. | 8 | OMOIKE A, CHOROVER J. Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: aqueous chemistry and adsorption effects[J]. Biomacromolecules, 2004, 5(4):1219-1230. | 9 | BEECH I, HANJAGSIT L, KALAJI M, et al. Chemical and structural characterization of exopolymers produced by Pseudomonas sp. NCIMB 2021 in continuous culture[J]. Microbiology, 1999, 145(6):1491-1497. | 10 | BADIREDDY A R, CHELLAM S, GASSMAN P L, et al. Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions[J]. Water Research, 2010, 44(15): 4505-4516. | 11 | RAMSAY I R, PULLAMMANAPPALLIL P C. Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry[J]. Biodegradation, 2001, 12(4): 247-256. | 12 | ANDREESEN J R, BAHL H, GOTTSCHALK G. Introduction to the physiology and biochemistry of the genus Clostridium[M]. Clostridia: Springer, 1989: 27-62. | 13 | BARKER H A. Fermentations of nitrogenous organic compounds[J]. The Bacteria, 1961, 2: 151-207. | 14 | HIPPE H. The genus Clostridium: nonmedical[J]. The Prokaryotes, 1992, 2: 1800-1866. | 15 | ELSDEN S R, HILTON M G, WALLER J M. The end products of the metabolism of aromatic amino acids by Clostridia[J]. Archives of Microbiology, 1976, 107(3): 283-288. | 16 | ELSDEN S R, HILTON M G. Volatile acid production from threonine, valine, leucine and isoleucine by Clostridia[J]. Archives of Microbiology, 1978, 117(2): 165-172. | 17 | MEAD G C. The amino acid-fermenting clostridia[J]. Microbiology, 1971, 67(1): 47-56. | 18 | ZINDEL U, FREUDENBERG W, RIRTH M, et al. Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate[J]. Archives of Microbiology, 1988, 150(3): 254-266. | 19 | NAGASE M, MATSUO T. Interactions between amino‐acid‐degrading bacteria and methanogenic bacteria in anaerobic digestion[J]. Biotechnology and Bioengineering, 1982, 24(10): 2227-2239. | 20 | TIAN K, LIU W J, QIAN T T, et al. Investigation on the evolution of N-containing organic compounds during pyrolysis of sewage sludge[J]. Environmental Science & Technology, 2014, 48(18): 10888-10896. | 21 | TIAN Y, ZHANG J, ZUO W, et al. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge[J]. Environmental Science & Technology, 2013, 47(7): 3498-3505. | 22 | PINNEKAMP J. Effects of thermal pretreatment of sewage sludge on anaerobic digestion[J]. Water Science and Technology, 1989, 21(4/5): 97-108. | 23 | BOUGRIER C, DELGENS J P, CARRERE H. Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge[J]. Biochemical Engineering Journal, 2007, 34(1): 20-27. | 24 | BREURE A M, MOOIJMAN K A, Van A J G. Protein degradation in anaerobic digestion: influence of volatile fatty acids and carbohydrates on hydrolysis and acidogenic fermentation of gelatin[J]. Applied Microbiology and Biotechnology, 1986, 24(5): 426-431. | 25 | TOMMASO G, RIBEIRO R, VARESCHE M B A, et al. Influence of multiple substrates on anaerobic protein degradation in a packed-bed bioreactor[J]. Water Science and Technology, 2003, 48(6): 23-31. | 26 | YANG G, ZHANG P, ZHANG G, et al. Degradation properties of protein and carbohydrate during sludge anaerobic digestion[J]. Bioresource Technology, 2015, 192: 126-130. | 27 | ELBESHBISHY E, NAKHIL G. Batch anaerobic co-digestion of proteins and carbohydrates[J]. Bioresource Technology, 2012, 116: 170-178. | 28 | LI N, HE J, YAN H, et al. Pathways in bacterial and archaeal communities dictated by ammonium stress in a high solid anaerobic digester with dewatered sludge[J]. Bioresource Technology, 2017, 241: 95-102. | 29 | 戴晓虎, 何进, 严寒, 等. 游离氨调控对污泥高含固厌氧消化反应器性能的影响[J]. 环境科学, 2017, 38(2): 679-687. | 29 | DAI X H, HE J, YAN H, et al. Effect of free ammonia regulation on performance of sludge high solids anaerobic digestion reactor[J]. Environmental Science, 2017, 38(2): 679-687. | 30 | CHEN S S, HE J, WANG H Y, et al. Microbial responses and metabolic pathways reveal the recovery mechanism of an anaerobic digestion system subjected to progressive inhibition by ammonia[J]. Chemical Engineering Journal, 2018, 350: 312-323. | 31 | WAGNER A O, HOHLBRUGGER P, LINS P, et al. Effects of different nitrogen sources on the biogas production-a lab-scale investigation[J]. Microbiological Research, 2012, 167(10): 630-636. | 32 | DAI X H, XU Y, DONG B. Effect of the micron-sized silica particles (MSSP) on biogas conversion of sewage sludge[J]. Water Research, 2017, 115: 220-228. | 33 | ZHANG W, ZHANG Z, YAN S. Effects of various amino acids as organic nitrogen sources on the growth and biochemical composition of Chlorella pyrenoidosa[J]. Bioresource Technology, 2015, 197: 458-464. | 34 | NOVAK J T, SADLER M E, MURTHY S N. Mechanisms of floc destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of biosolids[J]. Water Research, 2003, 37(13): 3136-3144. | 35 | K?RSTGENS V, FLEMMING H C, WINGENDER J, et al. Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa[J]. Water Science and Technology, 2001, 43(6): 49-57. | 36 | DEVLIN D C, ESTEVES S R R, DINSDALE R M, et al. The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge[J]. Bioresource Technology, 2011, 102(5): 4076-4082. | 37 | TIEHM A, NICKEL K, ZELLHORN M, et al. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J]. Water Research, 2001, 35(8):2003-2009. | 38 | PARAWIRA W. Enzyme research and applications in biotechnological intensification of biogas production[J]. Critical Reviews in Biotechnology, 2012, 32(2): 172-186. | 39 | WILSON C A, NOVAK J T. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment[J]. Water Research, 2009, 43(18): 4489-4498. | 40 | FENG Y, ZHANG Y, QUAN X, et al. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron[J]. Water Research, 2014, 52: 242-250. | 41 | SHAO L, WANG T, LI T, et al. Comparison of sludge digestion under aerobic and anaerobic conditions with a focus on the degradation of proteins at mesophilic temperature[J]. Bioresource Technology, 2013, 140: 131-137. | 42 | XIAO N, CHEN Y, CHEN A, et al. Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type[J]. Scientific Reports, 2014, 4: 3992. | 43 | HERMAN R, GAO Y, STORER N. Acid-induced unfolding kinetics in simulated gastric digestion of proteins[J]. Regulatory Toxicology and Pharmacology, 2006, 46(1): 93-99. | 44 | APPELS L, ASSCHE A VAN, WILLEMS K, et al. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge[J]. Bioresource Technology, 2011, 102(5): 4124-4130. | 45 | DONOSO B A, PEREZ E S, AYMERICH E, et al. Assessment of the influence of thermal pre-treatment time on the macromolecular composition and anaerobic biodegradability of sewage sludge[J]. Bioresource Technology, 2011, 102(2): 660-666. | 46 | PILLI S, YAN S, TYAGI R D, et al. Thermal pretreatment of sewage sludge to enhance anaerobic digestion: a review[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(6): 669-702. | 47 | CARRERE H, BOUGRIER C, CASTETS D, et al. Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment[J]. Journal of Environmental Science and Health Part A, 2008, 43(13): 1551-1555. | 48 | HATTINGH W H J, THIEL P G, SIEBERT M L. Determination of protein content of anaerobic digesting sludge[J]. Water Research, 1967, 1(3): 185-189. | 49 | 孟庆国, 赵凤兰, 张聿高, 等. 气相色谱法测定沼液中的游离蛋白氨基酸[J]. 农业环境保护, 2000, 19(2): 104-105. | 49 | MENG Q G, ZHAO F L, ZHANG Y G, et al. Determination of free protein amino acids in biogas slurry by gas chromatography[J]. Agricultural Environmental Protection, 2000, 19(2): 104-105. | 50 | 张军. 微波热解污水污泥过程中氮转化途径及调控策略[D]. 哈尔滨: 哈尔滨工业大学, 2013.ZHANG J. Nitrogen conversion pathway and control strategy in microwave pyrolysis of sewage sludge [D]. Harbin: Harbin Institute of Technology, 2013. | 51 | SPACKMAN D H, STEIN W H, Moore S. Automatic recording apparatus for use in chromatography of amino acids[J]. Analytical Chemistry, 1958, 30(7): 1190-1206. | 52 | 李建华, 刘文静, 李宁. 沼液中溶解游离氨基酸的测定——柱前衍生-反相高效液相色谱法[J]. 中国环境科学, 2016, 36(8): 2355-2363. | 52 | LI J H, LIU W J, LI N. Determination of dissolved free amino acids in biogas slurry: RP-HPLC with pre-column derivation[J]. China Environmental Science, 2016, 36(8): 2355-2363. | 53 | HUDSON N, BAKER A, REYNOLD D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review[J]. River Research and Applications, 2007, 23(6): 631-649. | 54 | YAMASHITA Y, JAFFE R. Characterizing the interactions between trace metals and dissolved organic matter using excitation-emission matrix and parallel factor analysis[J]. Environmental Science & Technology, 2008, 42(19): 7374-7379. | 55 | MURPHY K R, HAMBLY A, SINGH S, et al. Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC model[J]. Environmental Science & Technology, 2011, 45(7): 2909-2916. | 56 | LI X W, DAI X H, TAKAHASHI J, et al. New insight into chemical changes of dissolved organic matter during anaerobic digestion of dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR correlation spectroscopy[J]. Bioresource Technology, 2014, 159: 412-420. | 57 | RPDRIGUEZ V F. Environmental genomics, the big picture?[J]. FEMS Microbiology Letters, 2004, 231(2): 153-158. | 58 | KUHN R, BENNDORF D, RAPP E, et al. Metaproteome analysis of sewage sludge from membrane bioreactors[J]. Proteomics, 2011, 11(13): 2738-2744. | 59 | MARON P A, RANJARD L, MOUGEL C, et al. Metaproteomics: a new approach for studying functional microbial ecology[J]. Microbial Ecology, 2007, 53(3): 486-493. | 60 | SEIFERT J, TAUBERT M, JEHMLICH N, et al. Protein‐based stable isotope probing (protein‐SIP) in functional metaproteomics[J]. Mass Spectrometry Reviews, 2012, 31(6): 683-697. | 61 | ABRAM F, ENRIGHT A M, OREILLY J, et al. A metaproteomic approach gives functional insights into anaerobic digestion[J]. Journal of Applied Microbiology, 2011, 110(6): 1550-1560. | 62 | HAGEN L H, FRANK J A, ZAMANZADEH M, et al. Quantitative metaproteomics highlight the metabolic contributions of uncultured phylotypes in a thermophilic anaerobic digester[J]. Applied and Environmental Microbiology, 2017, 83(2): e01955. |
|