Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (3): 1101-1107.DOI: 10.16085/j.issn.1000-6613.2019-1009
• Materials science and technology • Previous Articles Next Articles
Weidong FAN1,2(),Wangxing LI1(),Dongzhan HAN1,2,Chunhui ZHENG2
Received:
2019-06-24
Online:
2020-04-03
Published:
2020-03-05
Contact:
Wangxing LI
通讯作者:
李旺兴
作者简介:
范伟东(1977—),男,博士研究生,研究方向为精细氧化铝。E-mail:CLC Number:
Weidong FAN,Wangxing LI,Dongzhan HAN,Chunhui ZHENG. Influence of particle size on kinetics of low temperature phase transformation of aluminum hydroxide[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1101-1107.
范伟东,李旺兴,韩东战,郑纯辉. 粒度对氢氧化铝低温相变动力学的影响[J]. 化工进展, 2020, 39(3): 1101-1107.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-1009
编号 | 化学成分/% | 粒度分布/μm | |||||
---|---|---|---|---|---|---|---|
Na2O | SiO2 | Fe2O3 | 灼减 | D10 | D50 | D90 | |
1# | 0.44 | 0.009 | 0.006 | 34.90 | 44.63 | 76.14 | 128.24 |
2# | 0.42 | 0.007 | 0.006 | 34.80 | 1.10 | 10.62 | 36.968 |
3# | 0.34 | 0.007 | 0.004 | 34.86 | 0.63 | 1.07 | 1.81 |
编号 | 化学成分/% | 粒度分布/μm | |||||
---|---|---|---|---|---|---|---|
Na2O | SiO2 | Fe2O3 | 灼减 | D10 | D50 | D90 | |
1# | 0.44 | 0.009 | 0.006 | 34.90 | 44.63 | 76.14 | 128.24 |
2# | 0.42 | 0.007 | 0.006 | 34.80 | 1.10 | 10.62 | 36.968 |
3# | 0.34 | 0.007 | 0.004 | 34.86 | 0.63 | 1.07 | 1.81 |
β/K·min-1 | 1#样品 | 2#样品 | 3#样品 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
第一峰 | 第二峰 | 第一峰 | 第二峰 | |||||||
Tp/K | ω1/2/K | Tp/K | ω1/2/K | Tp/K | ω1/2/K | Tp/K | ω1/2/K | Tp/K | ω1/2/K | |
5 | 497.7 | 29.3 | 569.0 | 33.1 | 499.3 | 23.3 | 568.4 | 46.8 | 560.6 | 47.7 |
10 | 504.3 | 29.6 | 581.0 | 42.0 | 511.1 | 23.5 | 581.1 | 48.0 | 572.6 | 48.9 |
15 | 512.1 | 29.8 | 586.0 | 42.5 | 515.0 | 23.6 | 586.7 | 48.7 | 578.5 | 49.1 |
20 | 516.9 | 29.6 | 591.0 | 44.2 | 517.9 | 24.0 | 592.5 | 49.9 | 586.4 | 49.8 |
25 | 523.0 | 30.3 | 593.6 | 47.0 | 518.9 | 24.2 | 594.8 | 51.1 | 589.4 | 50.1 |
30 | 524.9 | 29.9 | 594.6 | 49.4 | 523.1 | 24.6 | 597.1 | 52.3 | 590.0 | 50.7 |
β/K·min-1 | 1#样品 | 2#样品 | 3#样品 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
第一峰 | 第二峰 | 第一峰 | 第二峰 | |||||||
Tp/K | ω1/2/K | Tp/K | ω1/2/K | Tp/K | ω1/2/K | Tp/K | ω1/2/K | Tp/K | ω1/2/K | |
5 | 497.7 | 29.3 | 569.0 | 33.1 | 499.3 | 23.3 | 568.4 | 46.8 | 560.6 | 47.7 |
10 | 504.3 | 29.6 | 581.0 | 42.0 | 511.1 | 23.5 | 581.1 | 48.0 | 572.6 | 48.9 |
15 | 512.1 | 29.8 | 586.0 | 42.5 | 515.0 | 23.6 | 586.7 | 48.7 | 578.5 | 49.1 |
20 | 516.9 | 29.6 | 591.0 | 44.2 | 517.9 | 24.0 | 592.5 | 49.9 | 586.4 | 49.8 |
25 | 523.0 | 30.3 | 593.6 | 47.0 | 518.9 | 24.2 | 594.8 | 51.1 | 589.4 | 50.1 |
30 | 524.9 | 29.9 | 594.6 | 49.4 | 523.1 | 24.6 | 597.1 | 52.3 | 590.0 | 50.7 |
样品 | 活化能E/kJ·mol-1 | |
---|---|---|
Kissinger方程 | Ozawa方程 | |
1#样品第一峰 | 125.24 | 127.13 |
1#样品第二峰 | 181.17 | 181.41 |
2#样品第一峰 | 161.38 | 161.47 |
2#样品第二峰 | 164.13 | 165.24 |
3#样品 | 148.41 | 150.17 |
样品 | 活化能E/kJ·mol-1 | |
---|---|---|
Kissinger方程 | Ozawa方程 | |
1#样品第一峰 | 125.24 | 127.13 |
1#样品第二峰 | 181.17 | 181.41 |
2#样品第一峰 | 161.38 | 161.47 |
2#样品第二峰 | 164.13 | 165.24 |
3#样品 | 148.41 | 150.17 |
样品 | 指前因子A/min-1 |
---|---|
1#样品第一峰 | 4.89×1012 |
1#样品第二峰 | 1.36×1016 |
2#样品第一峰 | 2.73×1016 |
2#样品第二峰 | 3.55×1014 |
3#样品 | 1.92×1013 |
样品 | 指前因子A/min-1 |
---|---|
1#样品第一峰 | 4.89×1012 |
1#样品第二峰 | 1.36×1016 |
2#样品第一峰 | 2.73×1016 |
2#样品第二峰 | 3.55×1014 |
3#样品 | 1.92×1013 |
样品 | 直线斜率 | 反应级数n |
---|---|---|
1#样品第一峰 | 16.09 | 0.94 |
1#样品第二峰 | 22.96 | 0.95 |
2#样品第一峰 | 20.43 | 0.95 |
2#样品第二峰 | 20.91 | 0.95 |
3#样品 | 19.00 | 0.94 |
样品 | 直线斜率 | 反应级数n |
---|---|---|
1#样品第一峰 | 16.09 | 0.94 |
1#样品第二峰 | 22.96 | 0.95 |
2#样品第一峰 | 20.43 | 0.95 |
2#样品第二峰 | 20.91 | 0.95 |
3#样品 | 19.00 | 0.94 |
编号 | 煅烧温度220℃ | 煅烧温度300℃ | ||||
---|---|---|---|---|---|---|
D10 | D50 | D90 | D10 | D50 | D90 | |
1# | 46.14 | 74.76 | 120.30 | 46.51 | 77.43 | 125.32 |
2# | 0.76 | 10.40 | 33.01 | 0.86 | 11.70 | 34.17 |
3# | 0.67 | 1.16 | 1.95 | 0.46 | 1.01 | 2.10 |
编号 | 煅烧温度220℃ | 煅烧温度300℃ | ||||
---|---|---|---|---|---|---|
D10 | D50 | D90 | D10 | D50 | D90 | |
1# | 46.14 | 74.76 | 120.30 | 46.51 | 77.43 | 125.32 |
2# | 0.76 | 10.40 | 33.01 | 0.86 | 11.70 | 34.17 |
3# | 0.67 | 1.16 | 1.95 | 0.46 | 1.01 | 2.10 |
编号 | 煅烧温度220℃ | 煅烧温度300℃ |
---|---|---|
灼减/% | 灼减/% | |
1# | 22.40 | 18.56 |
2# | 21.95 | 18.12 |
3# | 20.22 | 17.60 |
编号 | 煅烧温度220℃ | 煅烧温度300℃ |
---|---|---|
灼减/% | 灼减/% | |
1# | 22.40 | 18.56 |
2# | 21.95 | 18.12 |
3# | 20.22 | 17.60 |
1 | 李旺兴.氧化铝生产理论与工艺[M].长沙:中南大学出版社,2010:176-180. |
LI Wangxing.Theory and technics of alumina production [M].Changsha:Centrol South University Press,2010:176-180 | |
2 | 李广慈,柳云骐,刘迪,等.不同形貌纳米薄水铝石的水/溶剂热合成及其催化应用[J].化工进展,2010,29(7):1215-1222. |
LI Guangci,LIU Yunqi,LIU Di,et al.Hydrothermal/solvothermal synthesis and potential catalytic application of nanoscale boehmite with different morphologies[J].Chemical Industry and Engineering Progress,2010,29(7):1215-1222. | |
3 | 吴彩虹,郑国源,王吉林,等.高分散纳米薄水铝石和纳米氧化铝的制备及其对甲基橙的吸附性能[J].无机化学学报,2019,36(3):449-458. |
WU Caihong,ZHENG Guoyuan,WANG Jilin,et al.Preparation and adsorption properties for melthyl orange of high dispersed boehmite and alumina nanostrctures[J].Chinese Journal of Inorganic Chemistry,2019,36(3):449-458. | |
4 | 李学礼,蔡进军,谭争国,等.活性氧化铝及其前驱体的性质及应用[J].石化技术与应用,2015,33(3):276-281. |
LI Xueli,CAI Jinjun,TAN Zhengguo,et al.Property and application of activated alumina and its precursor[J].Petrochemical Technology & Application,2015,33(3):276-281. | |
5 | LIU Q,WANG A Q,WANG X H,et al.Characterization and catalytic applications of mesoporous γ-alumina from boehmite sol[J].Microporous Meterials,2008,111(4):323-333. |
6 | 权婷婷,郭小蕊,谢天翼,等.捆束状分级结构γ-AlOOH的无模板水热制备及吸附性能研究[J].陶瓷学报,2017,38(3):398-403. |
QUAN Tingting,GUO Xiaorui,XIE Tianyi,et al.Synthesis of bundle-like hierarchical γ-AlOOHvia template-flee hydrothermal method and its adsorption[J].Journal of Ceramics,2017,38(3):398-403. | |
7 | 纪惟惟,王智杰,马敬红,等.勃姆石改性氧化铝膜对刚果红染料吸附的研究[J].膜科学与技术,2015,35(6):57-62. |
JI Weiwei,WANG Zhijie,MA Jinghong,et al.Investigation of alumina membrane modified with boehmite for Congo red dye adsorption[J].Membrane Science and Technology,2015,35(6):57-62. | |
8 | HYUCK H,RICHARAD J R.Formation of CoAl layered double hydroxide on the boehmite surface and its role in tungstete sorption[J].Journal of Environmental Sciences,2018,65(3):103-115. |
9 | STELLA G,FLORIAN H,ANJA M S,et al.Impact of crystalline and amorphous iron and alumina hydroxide on mechanisms of phosphate adsorption and desorption[J].Journal of Environmental Sciences,2018,70(8):178-192. |
10 | 安亚强,张汉鸿,吴春丹,等.低水分勃姆石涂层隔膜研究进展[J].广东化工,2019,46(2):105-107. |
AN Yaqiang,ZHANG Hanhong,WU Chundan,et al.Research progress of low moisture bomsite coating separators[J].Guangdong Chemical Industry,2019,46(2):105-107. | |
11 | 柳彦梅,张存良,海士坤,等.勃姆石阻燃和增强聚碳酸亚丙酯复合材料的制备和表征[J].塑料科技,2018,46(9):73-77. |
LIU Yanmei,ZHANG Cunliang,Shikun HAI,et al.Preparation and characterization of flame retardant and reinforced PPC composites with boehmite[J].Plastics Science and Technology,2018,46(9):73-77. | |
12 | 王娜,赵莹,朱明,等.勃姆石阻燃改性PP复合材料的制备及其性能研究[J].塑料科技,2017,45(11):36-40. |
WANG Na,ZHAO Ying,ZHU Ming,et al.Study on properties of boehmite flame retardant modified PP composites and its preparation[J].Plastics Science and Technology,2017,45(11):36-40. | |
13 | KANGHEE C,JUNGSU K,HEE T B,et al.Synthesis of CuCl/boehmite adsorbents that exhibit CO selectivity in CO/CO2 separation[J].Journal of Hazardous Materials,2018,344(15):857-864. |
14 | ARASH G,ZEINAB S,BAHMAN T.Tribromide ion supported on boehmite nanoparticles as a reusable catalyst for organic reactions[J].Comptes Rendus Chimie,2018,21(11):1011-1022. |
15 | 王瑞,郭彦鑫.勃姆石催化浆态床甲醇脱水制二甲醚[J].工业催化,2015,23(1):54-58. |
WANG Rui,Guo Yanxin.Catalytic performance of boehmite catalysts for methanol dehydration to dim ethyl ether in slurry reactor[J].Industrial Catalysis,2015,23(1):54-58. | |
16 | CHIVAS C,LONGUETB C,POURCHEZC J.Physical, morphological and chemical modification of Al-based nanofillers in by-products of incinerated nanocomposites and related biological outcome[J].Journal of Hazardous Materials,2019,365(3):405-412. |
17 | MALYALA P,LAERA D,CIANETTI S.The preparation and physico-chemical characterization of aluminum hydroxide/TLR7a, a noval vaccine adjuvant comprising a small molecule adsorbed to aluminum hydroxide[J].Journal of Pharmaceutical Sciences,2018,107(6):1577-1585. |
18 | 刘超,王晶,杨雨佳.水热处理异丙醇铝及其煅烧产物的显微结构[J].硅酸盐学报,2014,42(12):1554-1559. |
LIU Chao,WANG Jing,YANG Yujia.Microstructure of productsvia hydrothermol treatment and calcination of aluminum isopropoxide[J].Journal of the Chinese Ceramic Society,2014,42(12):1554-1559. | |
19 | 熊敏,肖汉宇.制备工艺对Al2O3纳滤膜的结构及结构性能的影响[J].硅酸盐学报,2018,46(12):1733-1741. |
XIONG Min,XIAO Hanyu.Effect of preparation process on structure and perpeability of Al2O3 nanofiltration membrane[J].Journal of the Chinese Ceramic Society,2018,46(12):1733-1741. | |
20 | 黄静,夏举佩,罗中秋.碳酸钠沉淀法制备氢氧化铝及其形成机理讨论[J].化工进展,2017,36(3):1120-1125. |
HUANG Jing,XIA Jupei,LUO Zhongqiu.Preparation and growth mechanism of aluminum hydroxide by precipitation method with sodium carbonate[J].Chemical Industry and Engineer Progress,2017,36(3):1120-1125. | |
21 | 李长刚,赵萍,王维勋,等.微乳/水热法制备勃姆石[J].齐鲁工业大学学报(自然科学版),2017,31(5):13-16. |
LI Changgang,ZHAO Ping,WANG Weixun,et al.Preparation of boehmite by microemulsion/hydrothermal method[J].Journal of Shandong Polytechnic University,2017,31(5):13-16. | |
22 | 彭志宏,李琼芳,周秋生.氢氧化铝脱水过程的动力学研究[J].轻金属,2010(5):16-18. |
PENG Zhihong,LI Qiongfang,ZHOU Qiusheng.Studies on dehydration kinetics of aluminum hydroxide[J].Light Metals,2010(5):16-18. | |
23 | 龚念.特殊形貌氢氧化铝煅烧过程的微观形貌演变及动力学分析[D].大连:大连交通大学,2013. |
GONG Nian.Microsopic morphology evolution and dynamics analysis of the special morphology of aluminum hydroxide during calcination process[D].Dalian:Dalian Jiaotong University,2013. | |
24 | 关昕,王晶,史忠祥.水热法制备薄水铝石粉体及其脱水动力学分析[J].大连交通大学学报,2018,39(4):77-82. |
GUAN Xin,WANG Jing,SHI Zhongxiang.Preparation and kinetics of dehydration of boehmite by hydrothermal treatment[J].Journal of Dalian Jiaotong University,2018,39(4):77-82. | |
25 | KISSINGER H E.Reaction kinetics in differential thermal analysis[J].Analytical Chemistry,1957,29(11):1702-1706. |
26 | OZAWA T.Kinetics of non-isothermal crystallization[J].Polymer,1971,12(3):150-158. |
27 | CRANE L W.Analysis of curing kinetics in polymer conposite[J].Journal of Polymer Science,1973,11(8):533-540. |
[1] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[2] | CHEN Zhiping, SHI Faxiang, ZHOU Wenwu, YANG Zhiyuan, ZHOU Anning. Study on SAPO-11 molecular sieve catalyst with small particle size and hierarchical pores for isomerization of hydrocarbons [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4767-4781. |
[3] | CHEN Erjun, ZHANG Yuling, LU Shaolei, DUAN Haiyang, JIN Wenzhang. Stability and physicochemical properties of air nanobubbles [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4673-4681. |
[4] | WANG Zepeng, YUAN Zhongxian, WANG Jie, WEN Xin, LIU Yimo. Effect of particulate diameter of silica gel on performance of solar adsorption refrigeration system [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3545-3552. |
[5] | LI Juanjuan, ZHANG Tianyong, LI Xianggao. Construction of high-quality iron-manganese black nano-dispersion system for electrophoretic display [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3178-3185. |
[6] | LYU Feiyong, CHU Mo, YI Haoran, HAO Yan, YANG Yanbo, SHI Xu, SUN Xingbo. Distribution characteristics of magnetic ash particles in gasification slag of different particle sizes [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2372-2378. |
[7] | HAN Fen, YANG Na, SUN Yongli, JIANG Bin, XIAO Xiaoming, ZHANG Lyuhong. Removal of emulsified water in oil by glass fiber coalescer [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6723-6732. |
[8] | JI Zike, BAO Cheng. Research progress of selective CO methanation [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 120-132. |
[9] | ZHANG Shuang, ZHAO Lixin, LIU Yang, SONG Minhang, LIU Lin. Analysis of flow field distribution and separation characteristics of degassing and oil-removal hydrocyclone system [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 75-85. |
[10] | XU Bo, JIANG Guobin, YU Jinlei, HU Jinyan, ZHAO Liang, XU Bingke. Impact of different surfactants on characteristics of single-phase microemulsions [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 350-356. |
[11] | XU Zhong, HOU Jing, WU Enhui, LI Jun, HUANG Ping, TANG Yalan. Effect of graphite on latent heat and conductivity of activated carbon/fatty acid composite phase change materials [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3878-3891. |
[12] | SONG Minhang, ZHAO Lixin, XU Baorui, LIU Lin, ZHANG Shuang. Discussion on technology of improving separation efficiency of liquid-liquid hydrocyclone [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6590-6603. |
[13] | TIAN Chang, SU Mingxu, JIANG Yu, XIA Duobing. Method and device for on-line measurement of particle size distribution and density of desulfurization slurry by ultrasonic [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6516-6522. |
[14] | Yuan LI, Dan SUN, Chenfang YANG, Xiaoyao TAN. Effect of silica sol particle size on SAPO-34 synthesis and catalytic performance in methanol to olefin reaction [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3701-3707. |
[15] | Yingmei WANG, Shiqiang DONG, Jing ZHAN, Qingbai WU, Peng ZHANG. Effect of quartz sand particle size on the formation and distribution of methane hydrate [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3049-3056. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |