Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (11): 5173-5180.DOI: 10.16085/j.issn.1000-6613.2019-0340
• Applied technology • Previous Articles Next Articles
Zebing LI(),Xin PAN,Shunliang LIU,Jingyan MAO,Zhanxue SUN,Weimin ZHANG()
Received:
2019-03-07
Online:
2019-11-05
Published:
2019-11-05
Contact:
Weimin ZHANG
通讯作者:
张卫民
作者简介:
李泽兵(1981—),男,博士,硕士生导师,研究方向为水污染控制。E-mail:基金资助:
CLC Number:
Zebing LI,Xin PAN,Shunliang LIU,Jingyan MAO,Zhanxue SUN,Weimin ZHANG. Long-term performance of the composite acidophilic ferrous oxide column[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5173-5180.
李泽兵,潘昕,刘顺亮,毛静岩,孙占学,张卫民. 复合嗜酸亚铁氧化柱的长期运行特征[J]. 化工进展, 2019, 38(11): 5173-5180.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0340
组分 | 浓度 /mg·L-1 | 组分 | 浓度 /mg·L-1 | 组分 | 浓度 /mg·L-1 | 组分 | 浓度 /mg·L-1 |
---|---|---|---|---|---|---|---|
Al | 492.4 | Co | 3.438 | Mg | 562.8 | S | 12520 |
As | 2.699 | Cr | 2.182 | Mn | 263.2 | Sb | 0.112 |
B | 0.3675 | Cu | 1.081 | Mo | 2.18 | Si | 187.9 |
Ba | 0.062 | F | 1121.4 | Na | 57.45 | Sr | 10.2 |
Be | 0.1299 | Fe | 13800 | Ni | 3.301 | Ti | 94.67 |
Bi | 0.002 | Hg | 0.009 | P | 127.7 | Zn | 16.05 |
Ca | 682.1 | K | 10.112 | Pb | 0.0117 | V | 1.078 |
Cd | 0.05 | Li | 2.884 | Rb | 0.049 |
组分 | 浓度 /mg·L-1 | 组分 | 浓度 /mg·L-1 | 组分 | 浓度 /mg·L-1 | 组分 | 浓度 /mg·L-1 |
---|---|---|---|---|---|---|---|
Al | 492.4 | Co | 3.438 | Mg | 562.8 | S | 12520 |
As | 2.699 | Cr | 2.182 | Mn | 263.2 | Sb | 0.112 |
B | 0.3675 | Cu | 1.081 | Mo | 2.18 | Si | 187.9 |
Ba | 0.062 | F | 1121.4 | Na | 57.45 | Sr | 10.2 |
Be | 0.1299 | Fe | 13800 | Ni | 3.301 | Ti | 94.67 |
Bi | 0.002 | Hg | 0.009 | P | 127.7 | Zn | 16.05 |
Ca | 682.1 | K | 10.112 | Pb | 0.0117 | V | 1.078 |
Cd | 0.05 | Li | 2.884 | Rb | 0.049 |
1 | ZAMMITC M, BRUGGERJ, SOUTHAMG, et al. Insitu recovery of uranium—The microbial in fluence [J]. Hydrometallurgy, 2014, 150: 236-244. |
2 | PETERSENJ. Heap leaching as a key technology for recovery of values from low-grade ores:a brief overview[J]. Hydrometallurgy, 2016, 165(1): 206-212. |
3 | ABHILASH, MEHTAK D, KUMARV, et al. Bioleaching: an alternate uranium ore processing technology for India[J]. Energy Procedia, 2011, 7(1): 158-162. |
4 | 孟运生, 樊保团, 刘建, 等. 铀矿细菌堆浸的生物接触氧化槽[J]. 铀矿冶, 2004, 23(4): 182-186. |
MENGYunsheng, FANBaotuan, LIUJian, et al. Biomembrane oxidizing tank used in the process of bacterial heap leaching of uranium ore[J]. Uranium Mining and Metallurgy, 2004, 23(4): 182-186. | |
5 | 杨维涨, 刘辉. 浸铀细菌扩大培养中铁沉淀对生物膜的影响[J]. 稀有金属与硬质合金, 2009, 37(1): 47-49. |
YANGWeizhang, LIUHui. The effect of iron precipitate on biomembrane during the amplification culture of uranium-leaching bacteria[J]. Rare Metals and Cemented Carbides, 2009, 37(1): 47-49. | |
6 | MAZUELOSA, ROMEROR, PALENCIAI, et al. Technical note continuous ferrous iron biooxidation in flooded packed bed reactors[J]. Minerals Engineering, 1999, 12(5): 559. |
7 | MAZUELOSA, CARRANZAF, PALENCIAI, et al. High efficiency reactor for the biooxidation of ferrous iron[J]. Hydrometallurgy, 2000, 58(3): 269-275. |
8 | MAZUELOSA, CARRANZAF, ROMEROR, et al. Operational pH in packed-bed reactors for ferrous ion bio-oxidation[J]. Hydrometallurgy, 2010, 104: 186-192. |
9 | MAZUELOSA, MORENOJ M, CARRANZAF, et al. Biotic factor does not limit operational pH in packed-bed bioreactor for ferrous iron biooxidation[J]. Journal of Industrial Microbiology and Biotechnology, 2012, 39(12): 1851-1858. |
10 | CHOWDHURYF, OJUMUT V. Investigation of ferrous-iron biooxidation kinetics by Leptospirillum ferriphilum in a novel packed-column bioreactor: effects of temperature and jarosite accumulation[J]. Hydrometallurgy, 2014, 141: 36-42. |
11 | ROWEO F, JOHNSOND B. Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors[J]. Systematic and Applied Microbiology, 2008, 31(1): 68-77. |
12 | NIKOLOVL, MEHOCHEVD, DIMITROVD. Continuous bacterial ferrous iron oxidation by Thiobacillus ferrooxidans in rotating biological contactors[J]. Biotechnology Letters, 1986, 8(10): 707-710. |
13 | GRISHINTS I, TUOVINENO H. Fast kinetics of Fe2+ oxidation in packed-bed reactors[J]. Applied and Environmental Microbiology, 1988, 54(12): 3092-3100. |
14 | JASISANKAS, MODAKJ M. Ferrous iron oxidation by foam immobilized Acidithiobacillus ferrooxidans: experiments and modeling[J]. Biocatalyts and Bioreactor Design, 2010, 25(5): 1328-1342. |
15 | NEMATIM, WEBBC. Effect of ferrous iron concentration on the catalytic activity of immobilized cells of Thiobacillus ferrooxidans[J]. Appl. Microbiol. Biotechnol., 1996, 46(3): 250-255. |
16 | ARMENTIAH, WEBBC. Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilised in polyurethane foam support particles[J]. Appl. Microbiol. Biotechnol., 1992, 36(5): 697-700. |
17 | LANCYE D, TUOVINENO H. Ferrous ion oxidation by Thiobacillusferrooxidans immobilized in calcium alginate[J]. Appl. Microbiol. Biotechnol., 1984, 20(2): 94-99. |
18 | LONGZ E, HUANGY H, CAIZ L, et al. Biooxidation of ferrous iron by immobilized Acidithiobacillus ferrooxidans in poly(vinyl alcohol) cryogel carriers[J]. Biotechnology Letters, 2003, 25(3): 245-249. |
19 | WANGY F, YANGX F, LIH Y, et al. Immobilization of Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate[J]. Polymer Degradation and Stability, 2006, 91(10): 2408-2414. |
20 | WANGY F, YANGX J, TUW, et al. High-rate ferrous iron oxidation by immobilized Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate[J]. Journal of Microbiological Methods, 2007, 68(2): 212-217. |
21 | MOUSAVIS M, YAGHMAEIS, JAFARIA. Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillusferrooxidans. PartⅡ: Bioreactor experiments[J]. Fuel, 2007, 86(7/8): 993-999. |
22 | GIAVENOA, LAVALLEL, GUIBALE, et al. Biological ferrous sulfate oxidation by A. ferrooxidans immobilized on chitosan beads[J]. Journal of Microbiological Methods, 2008, 72(3): 227-234. |
23 | PRADHANN, NATHSARMAK C, RAOK S, et al. Heap bioleaching of chalcopyrite: a review[J]. Minerals Engineering, 2008, 21(5): 355-365. |
24 | 刘亚洁, 柳建设, 李江, 等. 含氟铀矿石酸法堆浸与生物堆浸体系微生物群落多样性比较[J].有色金属(冶炼部分), 2016(3): 26-31. |
LIUYajie, LIUJianshe, LIJiang, et al. Comparison of microbial diversity in acid heap leaching and bio-heap leaching with fluoride-bearing uranium ores[J]. Nonferrous Metals(Extractive Metallurgy), 2016(3): 26-31. | |
25 | WANJIYAM, CHOWDHURYF, OJUMUT V. Solution pH and Jarosite management during ferrous iron biooxidation in a novel packed-column bioreactor[J]. Advanced Materials Research, 2015, 1130: 291-295. |
26 | DAOUDJ, KARAMANEVD. Formation of jarosite during Fe2+, oxidation by Acidithiobacillus ferrooxidans [J]. Minerals Engineering, 2006, 19(9): 960-967. |
27 | CHOWDHURYF, OJUMUT V. Investigation of ferrous-iron biooxidation kinetics by Leptospirillum ferriphilum, in a novel packed-column bioreactor: effects of temperature and jarosite accumulation[J]. Hydrometallurgy, 2014, 141(2): 36-42. |
28 | KAKSONENA H, MORRISC, REA S, et al. Biohydrometallurgical iron oxidation and precipitation PartⅠ: Effect of pH on process performance[J]. Hydrometallurgy, 2014, 147/148: 255-263. |
29 | MOSHNIAKOVAS A, KARAVAIKOG I. Effect of pH and temperature on the kinetics of Fe2+ oxidation by Thiobacillus ferrooxidans[J]. Mikrobiologiia, 1979, 48(1): 49-52. |
30 | MISHRAA K, ROY P, MAHAPATRAS S R. Isolation of Thiobacillus ferrooxidans, from various habitats and their growth pattern on solid medium[J]. Current Microbiology, 1983, 8(3): 147-152. |
31 | HALLBERGK B, GONZALEZTORILE, JOHNSOND B. Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments[J]. Extremophiles Life Under Extreme Conditions, 2010, 14(1): 9-19. |
32 | 陈鹏, 王清良, 胡鄂明, 等. 耐冷嗜酸硫杆菌的生长特性和固定化培养[J].金属矿山, 2018, 47(3): 90-96. |
CHENPeng, WANGQingliang, HUEming, et al. Growth characteristics of Acidithiobacillusferrivorans and its immobilization culture[J]. Metal Mine, 2018, 47(3): 90-96. | |
33 | JONESR M, JOHNSOND B. Iron kinetics and evolution of microbial populations in low-pH, ferrous iron-oxidizing bioreactors[J]. Environmental Science & Technology, 2016, 50(15): 8239-8245. |
34 | AULDR R, MYKYTCZUKN C, LEDUCL G, et al. Seasonal variation in an acid mine drainage microbial community[J]. Canadian Journal of Microbiology, 2017, 63(2): 137-152. |
35 | LILJEQVISTM, OSSANDONF J, GONZALEZC, et al. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream[J]. Fems Microbiology Ecology, 2015, 91(4): 131-135. |
36 | TRANT T T, MANGENOTS, MAGDELENATG, et al. Comparative genome analysis provides insights into both the lifestyle of Acidithiobacillus ferrivorans strain CF27 and the chimeric nature of the iron-oxidizing acidithiobacilli genomes[J]. Frontiers in Microbiology, 2017, 8: 1-13. |
37 | CCORAHUA- SANTOR, ECA A, ABANTOM, et al. Physiological and comparative genomic analysis of Acidithiobacillus ferrivorans PQ33 provides psychrotolerant fitness evidence for oxidation at low temperature[J]. Research in Microbiology, 2017, 168(5): 482-492. |
38 | MYKYTCZUKN C, TREVORSJ T, FOOTES J, et al. Proteomic insights into cold adaptation of psychrotrophic and mesophilic Acidithiobacillus ferrooxidans strains[J]. Antonie Van Leeuwenhoek, 2011, 100(2): 259-277. |
39 | CHRISTELS, FRIDLUNDJ, WATKINE L, et al. Acidithiobacillus ferrivorans SS3 presents little RNA transcript response related to cold stress during growth at 8℃ suggesting it is a eurypsychrophile[J]. Extremophiles, 2016, 20(6): 903-913. |
40 | BARAHONAS, DORADORC, ZHANGR, et al. Isolation and characterization of a novel Acidithiobacillus ferrivorans strain from the Chilean Altiplano: attachment and biofilm formation on pyrite at low temperature[J]. Research in Microbiology, 2014, 165(9): 782-793. |
41 | HEDRICHS, JOHNSOND B. Acidithiobacillus ferridurans sp. nov. an acidophilic iron-, sulfur- and hydrogen-metabolizing chemolithotrophic gammaproteobacterium[J]. Int. J. Syst. Evol. Microbiol., 2013, 63: 4018-4025. |
[1] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[2] | Lijie CHENG, Ningbo GAO, Hua CHU, Cui QUAN, Liheng ZHANG, Xinggang LI. Metabolism and application of perchlorate reducing bacteria in microbial reduction of perchlorate: a review [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 251-261. |
[3] | Taotao TANG,Jiang LI,Aijinag YANG,Zhao YANG,Fuliang XIANG,Huayu YUAN. Effects of straw type and ratio change on microbial community in anaerobic digestion of sludge [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 667-678. |
[4] | Haoliang LU, Qing TIAN, Yanbin ZHU, Jian ZHANG, Pengbo JIAO, Huan LIN. State of the art for mechanisms and countermeasures of low temperature biological nitrogen removal [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 372-379. |
[5] | Yiqin WANG, Xuehui XIE, Xiulin ZHENG, Qingyun ZHANG, Kexin XU, Jianshe LIU. Advances in research on activators promoting microbial degradation of dyes [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2968-2976. |
[6] | Yanmei ZHANG,Zebing LI,Kai AN,Shuang WU,Rongfu XIE. Degradation characteristics and influencing factors of DMF degrading communities [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1517-1523. |
[7] | ZHANG Qingyun, XIE Xuehui, LIU Jianshe. Research overview of microbial co-metabolism on printing and dyeing wastewater treatment [J]. Chemical Industry and Engineering Progress, 2017, 36(09): 3492-3501. |
[8] | WANG Lijuan, QIAN Ziwen, SHEN Haibo, ZHU Jun, WU Yanfei, CHEN Mengjun, WANG Liqun. Separation and biodegradation characteristics of a halotolerant strain [J]. Chemical Industry and Engineering Progress, 2017, 36(03): 1047-1051. |
[9] | JIANG Yan, ZHANG Xiaohua, LIANG Xinyuan, ZHANG Xianming. Biotechnological application to ground processing and underground mining in oil field [J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3383-3391. |
[10] | YU Chengzhi, XIE Xuehui, ZHENG Xiulin, XU Leyi, LI Ran, LIU Jianshe. Decolorization and repigmentation of reactive black 5 biodegradation and their mechanisms [J]. Chemical Industry and Engineering Progree, 2016, 35(09): 2987-2996. |
[11] | ZHANG Xiaohua, JIANG Yan, YUE Xiquan, ZHANG Xianming. Progress in the research of displacement of reservoir oil by biosurfactants [J]. Chemical Industry and Engineering Progree, 2016, 35(07): 2033-2040. |
[12] | WU Wenli, YAN Jiabao, CHEN Pei, HUO Xiaoqiong, WU You, HU Qianqian. Screening of an aerobic denitrifier from refinery wastewater and its characteristics [J]. Chemical Industry and Engineering Progree, 2016, 35(05): 1524-1528. |
[13] | QIAO Nan, CHENG RuiJia, YU Dayu. Study on the denitrification characteristics of heterotrophic nitrification-aerobic denitrifier loaded on diatomite [J]. Chemical Industry and Engineering Progree, 2015, 34(05): 1459-1465. |
[14] | YU Chenyang, MAO Zhen. Characteristics and kinetics study of m-cresol biodegradation by Bacillus cereus strain SMC [J]. Chemical Industry and Engineering Progree, 2015, 34(05): 1453-1458. |
[15] | . Study on the purification and composition analysis [J]. Chemical Industry and Engineering Progree, 0, (): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |