[1] NIKISA S, FUJIWARA N. Estimating Hg emissions from coal-fired power stations in China[J]. Fuel, 2009, 88(1):214-217.
[2] 孙青柯, 黄亚继, 王靓, 等. 磁性Fe3O4-Ag复合纳米颗粒吸附剂脱汞性能实验研究[J]. 化工进展, 2017, 36(3):1101-1106. SUN Q K, HUANG Y J, WANG L, et al. Experimental study on mercury removal efficiencies of magnetic Fe3O4-Ag composite nanoparticles[J]. Chemical Industry and Engineering Progress, 2017, 36(3):1101-1106.
[3] PRABHU V, KIM T, KHAKPOUR Y, et al. Evidence of powdered activated carbon preferential collection and enrichment on electrostatic precipitator discharge electrodes during sorbent injection for mercury emissions control[J]. Fuel Processing Technology, 2012, 93(1):8-12.
[4] DERENNE S, SARTORELLI P, BUSTARD J. TOXECON clean coal demonstration for mercury and multi-pollutant control at the Presque Isle Power Plant[J]. Fuel Processing Technology, 2009, 90(11):1400-1405.
[5] LIU R. Examining the influence of post-influence of post- mercury-control on properties of fly ash concrete[R]. Colorado:University of Colorado Denver, 2010.
[6] DOMBROWSKI K. Mercury control for plants firing Texas lignite and equipped with ESP-wet FGD[R]. Final Project Report, 2010.
[7] KANG S G, EDBERG C D, REBULA E. Demonstration of Mer-Cure technology for enhanced mercury control[C]//DOE/NETL Mercury Control Technology Conference, Pittsburgh, 2007.
[8] WANG Y J, DUAN Y F, HUANG Z J, et al. Vapor-phase elemental mercury adsorption by Ca(OH)2 impregnated with MnO2 and Ag in fixed-bed system[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(3):479-487.
[9] ZHU C, DUAN Y F, WU C Y, et al. Mercury removal and synergistic capture of SO2/NO by ammonium halides modified rice husk char[J]. Fuel, 2016, 172:160-169.
[10] XU W Q, WANG H R, ZHU T Y. Mercury removal from coal combustion flue gas by modified fly ash[J]. Journal of Environmental Sciences, 2013, 25(2):393-398.
[11] 张安超, 向军, 胡松, 等. 银改性壳聚糖/膨润土吸附剂表征及气态汞脱除特性[J]. 中国电机工程学报, 2013, 33(29):18-24. ZHANG A C, XIANG J, HU S, et al. Characterization and property of sliver modified chitosan/bentonite sorbents for gas-phase elemental mercury removal[J]. Proceedings of the CSEE, 2013, 33(29):18-24.
[12] ZENG X B, XU Y, ZHANG B, et al. Elemental mercury adsorption and regeneration performance of sorbents FeMnOx enhanced via non-thermal plasma[J]. Chemical Engineering Journal, 2017, 309:503-512.
[13] LEE S S, LEE J Y, KEENER T C. Bench-scale studies of in-duct mercury capture using cupric chloride-impregnated carbons[J]. Environmental Science & Technology, 2009, 43(8):2957-2962.
[14] ZHANG Y S, DUAN W, LIU Z, et al. Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor[J]. Fuel, 2014, 128(15):274-280.
[15] 胡长兴, 周劲松, 骆仲泱, 等. 烟气脱汞过程中活性炭喷射量的影响因素[J]. 化工学报, 2005, 56(11):2172-2177. HU C X, ZHOU J S, LUO Z Y, et al. Factors affecting amount of activated carbon injection for flue gas mercury control[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(11):2172-2177.
[16] 洪亚光, 段钰锋, 朱纯, 等. 载溴高硫石油焦活性炭脱汞实验研究[J]. 中国电机工程学报, 2014, 34(11):1762-1768. HONG Y G, DUAN Y F, ZHU C, et al. Experimental study on mercury removal of high-sulfur petroleum coke activated carbon impregnated with bromine[J]. Proceedings of the CSEE, 2014, 34(11):1762-1768.
[17] NELSON J S, LANDRETH R, ZHOU Q H, et al. Accumulated power-plant mercury-removal experience with brominated PAC injection[C]//The Combined Power Plant Air Pollutant Control Mega Symposium Washington D C, 2004.
[18] SJOSTROM S, STARNS T, AMRHCIN J, et al. Full-scale evaluation of mercury control by injecting activated carbon upstream of a spray dryer and fabric filter on PRB coal[C]//Combined Power Plant Air Pollutant Control Mega Symposium,Washington, 2004.
[19] 杜雯, 殷立宝, 禚玉群, 等. 100MW燃煤电厂非碳基吸附剂喷射脱汞实验研究[J]. 化工学报, 2014, 65(11):4413-4419. DU W, YIN L B, ZHUO Y Q, et al. Experimental study on mercury capture using non-carbon sorbents in 100 MW coal-fired power plant[J]. CIESC Journal, 2014, 65(11):4413-4419.
[20] 蒋丛进, 刘秋生, 陈创社. 国华三河电厂飞灰基改性吸附剂脱汞技术研究[J]. 中国电力, 2015, 48(4):54-56. JIANG C J, LIU Q S, CHEN C S. Study on mercury removal technique using modified fly ash based sorbents in Guohua Sanhe power plant[J]. Eletric Power, 2015, 48(4):54-56.
[21] SKODRAS G, DIAMANTOPOULOU I, PANTOLEONTOS G, et al. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor[J]. Journal of Hazardous Materials, 2008, 158(1):1-13.
[22] JOHARI K, SAMAN N, SONG S T, et al. Adsorption enhancement of elemental mercury by various surface modified coconut husk as eco-friendly low-cost adsorbents[J]. International Biodeterioration & Biodegradation, 2016, 109:45-52.
[23] JOHARI K, SAMAN N, SONG S T, et al. Adsorption equilibrium and kinetics of elemental mercury onto coconut pith[J]. Journal of Environmental Science and Technology, 2015, 8:74-82.
[24] SHEN B X, LI Z, CHEN J H, et al. Kinetics study on the capture of elemental mercury in flue gas by KI-impregnated clays[J]. Canadian Journal of Chemical Engineering, 2015, 93:2168-2176.
[25] SHEN B X, LI G L, WANG F M, et al. Elemental mercury removal by the modified bio-char from medicinal residues[J]. Chemical Engineering Journal, 2015, 272:28-37.
[26] KHUNPHONOI R, KHAMDAHSAG P, CHIARAKORN S, et al. Enhancement of elemental mercury adsorption by silver supported material[J]. Journal of Environmental Sciences, 2015, 32:207-216.
[27] ZHANG J, DUAN Y F, ZHOU Q, et al. Adsorptive removal of gas-phase mercury by oxygen non-thermal plasma modified activated carbon[J]. Chemical Engineering Journal, 2016, 294:281-289.
[28] FUENTE-CUESTA A, DIAMANTOPOULOU I R, LOPEZ-ANTON M A, et al. Study of mercury adsorption by low-cost sorbents using kinetic modeling[J]. Industrial Engineer Chemistry Research, 2015, 54:5572-5579.
[29] ZHOU Q, DUAN Y F, HONG Y G, et al. Experimental and kinetic studies of gas-phase mercury adsorption by raw and bromine modified activated carbon[J]. Fuel Processing Technology, 2015, 134:325-332.
[30] PADAK B, WILCOX J. Understanding mercury binding on activated carbon[J]. Carbon, 2009, 47(12):2855-2864.
[31] 陈俊杰, 任建莉, 钟英杰, 等. 活性炭纤维吸附汞的量子化学研究[J]. 动力工程学报, 2010, 30(12):960-965. CHEN J J, REN J L, ZHONG Y J, et al. Quantum chemistry study of mercury adsorption by active carbon fiber[J]. Chinese Joural of Power Engineering, 2010, 30(12):960-965.
[32] GUO X, ZHAO P F, ZHENG C G. Theoretical study of different speciation of mercury adsorption on CaO(001) surface[J]. Proceedings of the Combustion Institute, 2009, 32(2):2693-2699.
[33] 郭欣, 郑楚光, 吕乃霞. 簇模型CaO(001)面上吸附汞与氯化汞的密度泛函理论研究[J]. 中国电机工程学报, 2005, 25(13):101-104. GUO X, ZHENG C G, LÜ N X. A density functional theory study of the adsorption of Hg and HgCl2 on a CaO(001) surface[J]. Proceedings of the CSEE, 2005, 25(13):101-104.
[34] XIANG W J, LIU J, CHANG M, et al. The adsorption mechanism of elemental mercury on CuO(110) surface[J]. Chemical Engineering Journal, 2012, 200/201/202:91-96.
[35] LIU J, HE M F, ZHENG C G, et al. Density functional theory study of mercury adsorption on V2O5(001) surface with implications for oxidation[J]. Proceedings of the Combustion Institute, 2011, 33(2):2771-2777.
[36] LOPEZ-ANTONA M A, PERRY R, ABAD-VALLE P, et al. Speciation of mercury in fly ashes by temperature programmed decomposition[J]. Fuel Processing Technology, 2011, 92(3):707-711.
[37] RALLO M, LOPEZ-ANTON M A, MEIJ R, et al. Study of mercury in by-products from a Dutch co-combustion power station[J]. Journal of Hazardous Materials, 2010, 174(1/2/3):28-33.
[38] OZAKI M, UDDIN M A, SASAOKA E, et al. Temperature programmed decomposition desorption of the mercury species over spent iron-based sorbents for mercury removal from coal derived fuel gas[J]. Fuel, 2008, 87(17/18):3610-3615.
[39] RUMAYOR M, FERNANDEZ-MIRANDA N, LOPEZ-ANTON M A, et al. Application of mercury temperature programmed desorption (HgTPD) to ascertain mercury/char interactions[J]. Fuel Processing Technology, 2015, 132:9-14.
[40] RUMAYOR M, DIAZ-SOMOANO M, LOPEZ-ANTON M A, et al. Mercury compounds characterization by thermal desorption[J]. Talanta, 2013, 114:318-322.
[41] LOPEZ-ANTON M A, YUAN Y, PERRY R, et al. Analysis of mercury species present during coal combustion by thermal desorption[J]. Fuel, 2010, 89(3):629-934.
[42] FLORA J R V, HARGIS R A, O'DOWD W J, et al. Modeling sorbent injection for mercury control in baghouse filters:Ⅰ-Model development and sensitivity analysis[J]. Journal of Air & Waste Management Association, 2003, 53(4):478-488.
[43] FLORA J R V, HARGIS R A, O'DOWD W J, et al. Modeling sorbent injection for mercury control in baghouse filters:Ⅱ-Pilot-scale studies and model evaluation[J]. Journal of Air & Waste Management Association, 2003, 53(4):489-496.
[44] SCALA F. Modeling mercury capture in coal-fired power plant flue gas[J]. Industrial & Engineering Chemistry Research, 2004, 43(10):2575-2589.
[45] SCALA F, CLACK H I. Mercury emissions from coal combustion:modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator[J]. Journal of Hazardous Materials, 2008, 152(2):616-623.
[46] ZHAO B T, ZHANG Z X, JIN J, et al. Simulation of mercury capture by sorbent injection using a simplified model[J]. Journal of Hazardous Materials, 2009, 170(2/3):1179-1185.
[47] ZHOU W, EGGENSPIELER G, ROKANUZZAMAN A, et al. Prediction of activated carbon injection performance for mercury capture in a full-scale coal-fired boiler[J]. Industrial & Engineering Chemistry Research, 2010, 49(8):3603-3610.
[48] 董守亮, 毛雁翎. 燃煤电站烟道内活性炭喷射对汞脱除的模拟研究[J]. 计算机与应用化学, 2016, 33(3):365-368. DONG S L, MAO Y L. Activated carbon injection for mercury removal simulation of coal-fired power plant flue inside[J]. Computers and Applied Chemistry, 2016, 33(3):365-368.
[49] 姚跃辉, 刁永发, 魏忠秋. 脱汞用吸附剂在袋式除尘器内分布均匀性研究[J]. 电站系统工程, 2015, 31(6):1-3. YAO Y H, DIAO Y F, WEI Z Q. Research on uniformity of adsorbent distribution in bag filter for mercury removal[J]. Power System Engineering, 2015, 31(6):1-3. |