[1] JULLESSON D, DAVID F, PFLEGER B, et al. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals[J]. Biotechnol. Adv., 2015, 33(7):1395-1402.
[2] LEE S Y, KIM H U. Systems strategies for developing industrial microbial strains[J]. Nat. Biotechnol., 2015, 33(10):1061-1072.
[3] LIN Z, ZHANG Y, WANG J. Engineering of transcriptional regulators enhances microbial stress tolerance[J]. Biotechnology Advances, 2013, 31(6):986-991.
[4] MUKHOPADHYAY A. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals[J]. Trends Microbiol., 2015, 23(8):498-508.
[5] MARTIEN J I, AMADOR-NOGUEZ D. Recent applications of metabolomics to advance microbial biofuel production[J]. Curr. Opin. Biotechnol., 2017, 43(2):118-126.
[6] PEABODY G L, WINKLER J, KAO K C. Tools for developing tolerance to toxic chemicals in microbial systems and perspectives on moving the field forward and into the industrial setting[J]. Current Opinion in Chemical Engineering, 2014, 6:9-17.
[7] RAU M H, CALERO P, LENNEN R M, et al. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals[J]. Microbial Cell Factories, 2016, 15(1):176.
[8] ISALAN M, LEMERLE C, MICHALODIMITRAKIS K, et al. Evolvability and hierarchy in rewired bacterial gene networks[J]. Nature, 2008, 452(7189):840-845.
[9] YU H, GERSTEIN M. Genomic analysis of the hierarchical structure of regulatory networks[J]. Proc. Natl. Acad. Sci. U S A, 2006, 103(40):14724-14731.
[10] CONRAD T M, LEWIS N E, PALSSON B O. Microbial laboratory evolution in the era of genome-scale science[J]. Molecular Systems Biology, 2011, 7:509.
[11] ALPER H, MOXLEY J, NEVOIGT E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production[J]. Science, 2006, 314(5805):1565-1568.
[12] ALPER H, STEPHANOPOULOS G. Global transcription machinery engineering:a new approach for improving cellular phenotype[J]. Metabolic Engineering, 2007, 9(3):258-267.
[13] GARST A D, BASSALO M C, PINES G, et al. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering[J]. Nature Biotechnology, 2017, 35(1):48-55.
[14] ALPER H. Development of systematic and combinatorial approaches for the metabolic engineering of microorganisms[D]. Philadelphia:Massachusetts Institute of Technology, 2006.
[15] GENG H, JIANG R. cAMP receptor protein (CRP) -mediated resistance/tolerance in bacteria:mechanism and utilization in biotechnology[J]. Appl. Microbiol. Biotechnol., 2015, 99(11):4533-4543.
[16] RAVCHEEV D A, BEST A A, SERNOVA N V, et al. Genomic reconstruction of transcriptional regulatory networks in lactic acid bacteria[J]. BMC Genomics, 2013, 14(1):1-14.
[17] GRAINGER D C, HURD D, HARRISON M, et al. Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome[J]. Proc. Proc. Natl. Acad Sci. USA, 2005, 102(49):17693-17698.
[18] MA H W, KUMAR B, DITGES U, et al. An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs[J]. Nucleic Acids Research, 2004, 32(22):6643-6649.
[19] BUSBY S, EBRIGHT R H. Transcription activation by catabolite activator protein (CAP)[J]. J. Mol. Biol., 1999, 293(2):199-213.
[20] BASAK S, GENG H, JIANG R. Rewiring global regulator cAMP receptor protein (CRP) to improve E. coli tolerance towards low pH[J]. Journal of Biotechnology, 2014, 173(1):68-75.
[21] CHONG H, GENG H, ZHANG H, et al. Enhancing E. coli isobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP)[J]. Biotechnology and Bioengineering, 2014, 111(4):700-708.
[22] CHONG H, HUANG L, YEOW J, et al. Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP)[J]. PLoS One, 2013, 8(2):e57628.
[23] WON H S, SEO M D, KO H S, et al. Interdomain interaction of cyclic AMP receptor protein in the absence of cyclic AMP[J]. Journal of Biochemistry, 2008, 143(2):163-167.
[24] ZHANG H, CHONG H, CHING C B, et al. Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance[J]. Applied Microbiology and Biotechnology, 2012, 94(4):1107-1117.
[25] HARMAN J G. Allosteric regulation of the cAMP receptor protein[J]. Biochim. Biophys. Acta, 2001, 1547(1):1-17.
[26] PASSNER J M, SCHULTZ S C, STEITZ T A. Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2. 1 A resolution[J]. J. Mol. Biol., 2000, 304(5):847-859.
[27] YU S, LEE J C. Role of residue 138 in the interdomain hinge region in transmitting allosteric signals for DNA binding in Escherichia coli cAMP receptor protein[J]. Biochemistry, 2004, 43(16):4662-4669.
[28] CHONG H, YEOW J, WANG I, et al. Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP)[J]. PLoS One, 2013, 8(10):e77422.
[29] ZHANG H, CHONG H, CHING C B, et al. Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance[J]. Biotechnol. Bioeng., 2012, 109(5):1165.
[30] ZHANG H, CHONG H, CHI B C, et al. Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance[J]. Appl. Microbiol. Biotechnol., 2012, 94(4):1107-1117.
[31] BASAK S, JIANG R. Enhancing E. coli Tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP)[J]. PLoS One, 2012, 7(12):e51179.
[32] ZHANG H, CHONG H, CHING C B, et al. Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance[J]. Appl. Microbiol. Biotechnol., 2012, 94(4):1107-1117.
[33] BASAK S, SONG H, JIANG R. Error-prone PCR of global transcription factor cyclic AMP receptor protein for enhanced organic solvent(toluene) tolerance[J]. Process Biochem., 2012, 47(12):2152-2158.
[34] BASAK S, GENG H, JIANG R. Rewiring global regulator cAMP receptor protein (CRP)to improve E. coli tolerance towards low pH[J]. J. Biotechnol., 2014, 173(1):68-75.
[35] MORENOVIVI N C, CABELLO P, MART NEZLUQUE M, et al. Prokaryotic nitrate reduction:molecular properties and functional distinction among bacterial nitrate reductases[J]. J. Bacteriol., 1999, 181(21):6573-6584.
[36] PARKINSON G, WILSON C, GUNASEKERA A, et al. Structure of the CAP-DNA complex at 2.5 angstroms resolution:a complete picture of the protein-DNA interface[J]. J. Mol. Biol., 1996, 260(3):395-408.
[37] UPPAL S, JAWALI N. The cyclic AMP receptor protein (CRP) regulates mqsRA, coding for the bacterial toxin-antitoxin gene pair, in Escherichia coli[J]. Research in Microbiology, 2016, 167(1):58-62.
[38] NISHINO K, SENDA Y, YAMAGUCHI A. CRP regulator modulates multidrug resistance of Escherichia coli by repressing the mdtEF multidrug efflux genes[J]. The Journal of Antibiotics, 2008, 61(3):120-127.
[39] 高茜,朱丽英,周伟,等. RAISE技术改组转录因子RpoD调控大肠杆菌的低pH值耐受性[J]. 化学与生物工程,2016,33(3):14-18. GAO Xi, ZHU Liying, ZHOU Wei, et al. Tailoring of transcription factor RpoD by RAISE to regulate low pH value tolerance of Escherichia coli[J]. Chemistry & Bioengineering, 2016, 33(3):14-18.
[40] ISHIHAMA A, SHIMADA T, YAMAZAKI Y. Transcription profile of Escherichia coli:genomic SELEX search for regulatory targets of transcription factors[J]. Nucleic Acids Research, 2016, 44(5):2058-2074.
[41] ZHANG F, QIAN X, SI H, et al. Significantly improved solvent tolerance of Escherichia coli by global transcription machinery engineering[J]. Microbial Cell Factories, 2015, 14(1):175.
[42] GAO X, JIANG L, ZHU L, et al. Tailoring of global transcription sigma D factor by random mutagenesis to improve Escherichia coli tolerance towards low-pH[J]. J. Biotechnol., 2016, 224:55-63.
[43] COLEMAN C, BAKER C, NICKERSON C A. The role of sigma factors in regulating bacterial stress responses and pathogenesis[M]. New York:Springer, 2006.
[44] TENAILLON O, RODRIGUEZ-VERDUGO A, GAUT R L, et al. The molecular diversity of adaptive convergence[J]. Science, 2012, 335(6067):457-461.
[45] CHANG R L, ANDREWS K, KIM D, et al. Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli[J]. Science, 2013, 340(6137):1220-1223.
[46] 乐军,蒋晓飞,梁莉,等. 蛋白质组学分析多重耐药的铜绿假单胞菌[J]. 中国抗生素杂志, 2006, 31(8):496-500. YUE Jun, JIANG Xiaofei, LIANG Li, et al.Proteomic analysis of multi-drug resistant pseudomonas aeruginosa[J]. Chinese Journal of Antibiotics, 2006, 31(8):496-500.
[47] CHARPENTIER B, BRANLANT C. The Escherichia coli gapA gene is transcribed by the vegetative RNA polymerase holoenzyme E sigma 70 and by the heat shock RNA polymerase E sigma 32[J]. J. Bacteriol., 1994, 176(3):830-839.
[48] COOLEY J W, HOWITT C A, VERMAAS W F. Succinate:quinol oxidoreductases in the cyanobacterium synechocystis sp. strain PCC 6803:Presence and function in metabolism and electron transport[J]. J. Bacteriol., 2000, 182(3):714-722.
[49] BOWLES L K, ELLEFSON W L. Effects of butanol on clostridium acetobutylicum[J]. Appl. Environ. Microbiol., 1985, 50(5):1165-1170.
[50] REYES L H, ALMARIO M P, KAO K C. Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli[J]. PLoS One, 2011, 6(3):e17678.
[51] MASUDA N, CHURCH G M. Escherichia coli gene expression responsive to levels of the response regulator EvgA[J]. J. Bacteriol., 2002, 184(22):6225-6234.
[52] STAUFFER L T, STAUFFER G V. Multiple roles for the sRNA GcvB in the regulation of slp levels in Escherichia coli[J]. ISRN Bacteriology, 2013, 2013(8):918106.
[53] BATTESTI A, MAJDALANI N, GOTTESMAN S. The RpoS-mediated general stress response in Escherichia coli[J]. Annu. Rev. Microbiol., 2011, 65:189-213.
[54] NISHINO K, SENDA Y, HAYASHINISHINO M, et al. Role of the AraC|[ndash]|XylS family regulator YdeO in multi-drug resistance of Escherichia coli[J]. J. Antibiot., 2009, 62(5):251-257.
[55] HENGGE R. Proteolysis of σ S (RpoS) and the general stress response in Escherichia coli[J]. Res. Microbiol., 2009, 160(9):667-676.
[56] GRUBER T M, GROSS C A. Multiple sigma subunits and the partitioning of bacterial transcription space[J]. Annu. Rev. Microbiol., 2003, 57:441-466.
[57] CONRAD T M, FRAZIER M, JOYCE A R, et al. RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media[J]. Proceedings of the National Academy of Sciences, 2010, 107(47):20500-20505.
[58] SEBASTIEN W, BARRICK J E, OLIVIER T, et al. Mutation rate inferred from synonymous substitutions in a long-term evolution experiment with Escherichia coli[J]. G3:Genes, Genomes, Genetics, 2011, 1(3):183-186.
[59] TENAILLON O, RODR GUEZ-VERDUGO A, GAUT R L, et al. The molecular diversity of adaptive convergence[J]. Science, 2012, 335(6067):457-461.
[60] BLABY I K, LYONS B J, WROCLAWSKAHUGHES E, et al. Experimental evolution of a facultative thermophile from a mesophilic ancestor[J]. Appl. Environ. Microbiol., 2012, 78(1):144.
[61] GAMACASTRO S, SALGADO H, PERALTAGIL M, et al. RegulonDB version 7. 0:transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units(Gensor Units)[J]. Nucleic Acids Res., 2011, 39(Database issue):98-105.
[62] DERLINDEN E V, IMPE J F V. Modeling growth rates as a function of temperature:model performance evaluation with focus on the suboptimal temperature range[J]. Int. J. Food Microbiol., 2012, 158(1):73-78.
[63] SANTOS C N, STEPHANOPOULOS G. Combinatorial engineering of microbes for optimizing cellular phenotype[J]. Curr. Opin. Chem. Biol., 2008, 12(2):168-176.
[64] GRUBER T M, GROSS C A. Multiple sigma subunits and the partitioning of bacterial transcription space[J]. Annu. Rev. Microbiol., 2003, 57:441-466.
[65] HAFT R J, KEATING D H, SCHWAEGLER T, et al. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria[J]. Proc. Natl. Acad Sci. USA, 2014, 111(25):2576-2585.
[66] SON Y J, PHUE J N, TRINH L B, et al. The role of Cra in regulating acetate excretion and osmotic tolerance in E. coli K-12 and E. coli B at high density growth[J]. Microbial Cell Factories, 2011, 10(1):1-9.
[67] PERRENOUD A, SAUER U. Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli[J]. J. Bacteriol., 2005, 187(9):3171.
[68] WERPY T A, HOLLADAY J E, WHITE J F. Top value added chemicals from biomass:Ⅰ. Results of screening for potential candidates from sugars and synthesis gas[R]. US:PNNL and NREL, 2004.
[69] ERICKSON B, WINTERS P. Perspective on opportunities in industrial biotechnology in renewable chemicals[J]. Biotechnol. J., 2011, 7(2):176-185.
[70] JANG Y S, KIM B, SHIN J H, et al. Bio-based production of C2-C6 platform chemicals[J]. Biotechnol. Bioeng., 2012, 109(10):2437-2459.
[71] MASUDA N, CHURCH G M. Escherichia coli gene expression responsive to levels of the response regulator EvgA[J]. J. Bacteriol., 2002, 184(22):6225-6234.
[72] CHRIST D, CHIN J W. Engineering Escherichia coli heat-resistance by synthetic gene amplification[J]. Protein Eng. Des. Sel., 2008, 21(2):121-125.
[73] TUCKER N P, LE B N, DIXON R, et al. There's NO stopping NsrR, a global regulator of the bacterial NO stress response[J]. Trends in Microbiol., 2010, 18(4):149.
[74] JOHNSON J R, CLABOTS C, ROSEN H. Effect of inactivation of the global Oxidative stress regulator OxyR on the colonization ability of Escherichia coli O1:K1:H7 in a mouse model of ascending urinary tract infection[J]. Infection and Immunity, 2006, 74(1):461-468.
[75] ZAFAR M A, SANCHEZ-ALBEROLA N, WOLF R E. Genetic evidence for a novel interaction between transcriptional activator SoxS and region 4 of the sigma(70) subunit of RNA polymerase at class Ⅱ SoxS-dependent promoters in Escherichia coli[J]. Journal of Molecular Biology, 2011, 407(3):333-353.
[76] TSUKAGOSHI N, AONO R. Entry into and release of solvents by Escherichia coli in an organic-aqueous two-liquid-phase system and substrate specificity of the AcrAB-TolC solvent-extruding pump[J]. J. Bacteriol., 2000, 182(17):4803-4810.
[77] RUIZ C, MCMURRY L M, LEVY S B. Role of the multidrug resistance regulator MarA in global regulation of the hdeAB acid resistance operon in Escherichia coli[J]. Journal of Bacteriology, 2008, 190(4):1290-1297.
[78] SEO S W, KIM D, SZUBIN R, et al. Genome-wide reconstruction of OxyR and SoxRS transcriptional regulatory networks under oxidative stress in Escherichia coli K-12 MG1655[J]. Cell Reports, 2015, 12(8):1289-1299.
[79] CHOI S H, BAUMLER D J, KASPAR C W. Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157:H7[J]. Appl. Environ. Microbiol., 2000, 66(9):3911-3916.
[80] SALGADO H, PERALTA-GIL M, GAMA-CASTRO S, et al. RegulonDB v8. 0:Omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold s tandards and more[J]. Nucleic Acids Res., 2013, 41(Database issue):203-213.
[81] SANG W S, KIM D, O'BRIEN E J, et al. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli[J]. Nature Communications, 2015, 6:7970.
[82] CASTANIE-CORNET M P, CAM K, BASTIAT B, et al. Acid stress response in Escherichia coli:mechanism of regulation of gadA transcription by RcsB and GadE[J]. Nucleic Acids Research, 2010, 38(11):3546-3554.
[83] SAYED A K, FOSTER J W. A 750 bp sensory integration region directs global control of the Escherichia coli GadE acid resistance regulator[J]. Molecular Microbiology, 2009, 71(6):1435-1450.
[84] OH H Y, LEE J O, KIM O B. Increase of organic solvent tolerance of Escherichia coli by the deletion of two regulator genes, fadR and marR[J]. Appl. Microbiol. Biotechnol., 2012, 96(6):1619-1627.
[85] CHEN T, WANG J, YANG R, et al. Laboratory-evolved mutants of an exogenous global regulator, IrrE from Deinococcus radiodurans, enhance stress tolerances of Escherichia coli[J]. PLoS One, 2011, 6(1):e16228.
[86] LEE H H, MOLLA M N, CANTOR C R, et al. Bacterial charity work leads to population-wide resistance[J]. Nature, 2010, 467(7311):82.
[87] LEE J Y, SUNG B H, YU B J, et al. Phenotypic engineering by reprogramming gene transcription using novel artificial transcription factors in Escherichia coli[J]. Nucleic Acids Res., 2008, 36(16):e102.
[88] GAO G, TIAN B, LIU L, et al. Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli[J]. DNA Repair, 2003, 2(12):1419-1427.
[89] PAN J, WANG J, ZHOU Z, et al. IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus[J]. PLoS One, 2009, 4(2):e4422.
[90] MA R, ZHANG Y, HONG H, et al. Improved osmotic tolerance and ethanol production of ethanologenic Escherichia coli by IrrE, a global regulator of radiation-resistance of Deinococcus radiodurans[J]. Current Microbiology, 2011, 62(2):659-664.
[91] CHEN T, WANG J, ZENG L, et al. Significant rewiring of the transcriptome and proteome of an Escherichia coli strain harboring a tailored exogenous global regulator IrrE[J]. PLoS One,2012,7(7):e37126.
[92] ZHOU Z, WEI Z, MING C, et al. Genome-wide transcriptome and proteome analysis of Escherichia coli expressing IrrE, a global regulator of Deinococcus radiodurans[J]. Mol. BioSyst., 2011, 7(5):1613-1620.
[93] WANG J, ZHANG Y, CHEN Y, et al. Global regulator engineering significantly improved Escherichia coli tolerances toward inhibitors of lignocellulosic hydrolysates[J]. Biotechnology and Bioengineering, 2012, 109(12):3133-3142.
[94] APPUKUTTAN D, SINGH H, PARK S H, et al. Engineering synthetic multistress tolerance in Escherichia coli by using a deinococcal response regulator, DR1558[J]. Appl. Environ. Microbiol., 2015, 82(4):1154.
[95] MINTON K W. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans[J]. Mol. Microbiol., 1994, 13(1):9-15.
[96] MATTIMORE V, BATTISTA J R. Radioresistance of Deinococcus radiodurans:functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation[J]. J. Bacteriol., 1996, 178(3):633-637.
[97] DALY M J, OUYANG L, FUCHS P, et al. in vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans[J]. J. Bacteriol., 1994, 176(12):3508-3517. |