Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (07): 2627-2634.DOI: 10.16085/j.issn.1000-6613.2017-1512
Previous Articles Next Articles
YUE Xudong, YUAN Bing, ZHU Guoqiang, XIE Congxia
Received:
2017-07-21
Revised:
2018-03-06
Online:
2018-07-05
Published:
2018-07-05
岳旭东, 袁冰, 朱国强, 解从霞
通讯作者:
解从霞,教授,博士生导师,研究方向为环境友好催化。
作者简介:
岳旭东(1992-),男,硕士研究生,研究方向为生物质催化转化。E-mail:yx1419320@126.com
基金资助:
CLC Number:
YUE Xudong, YUAN Bing, ZHU Guoqiang, XIE Congxia. Development in the applications of deep eutectic solvents in organic synthesis and extraction separation[J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2627-2634.
岳旭东, 袁冰, 朱国强, 解从霞. 低共熔溶剂在有机合成和萃取分离中的应用进展[J]. 化工进展, 2018, 37(07): 2627-2634.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-1512
[1] 张文林,张佳莉,靳斐,等.离子液体及负载型钯催化剂在加氢反应中的研究进展[J]. 化工进展, 2017, 36(2):548-554. ZHANG W L, ZHANG J L, JIN F, et al. Progress of ionic liquids and supported palladium catalysts in thehydrogenation reactions[J]. Chemical Industry and Engineering Progress, 2017, 36(2):548-554. [2] ABBOTT A P, CAPPER G, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003(1):70-71. [3] LIU P, HAO J, MO L, et al. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions[J]. Cheminform, 2015, 46(31):48675-48704. [4] ABBOTT A P, BARRON J C, RYDER K S, et al. Eutectic-based ionic liquids with metal-containing anions and cations[J]. Chemistry, 2007, 13(22):6495-6501. [5] DAI Y T, SPRONSEN J V, WITKAMP G J, et al. Natural deep eutectic solvents as new potential media for green technology[J]. Analytica Chimica Acta, 2013, 766(5):61-68. [6] ABBOTT A P,CAPPER G,MCKENZIE K J,et al. Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride[J]. Journal of Electroanalytical Chemistry, 2007, 599(2):288-294. [7] WU Z, LONG Y F, LV X, et al. Microwave heating synthesis of spindle-like LiMnPO4/C in a deep eutectic solvent[J]. Ceramics International, 2017, 43(8):6089-6095. [8] DURAND E, LECOMTE J, BARÉA B, et al. Evaluation of deep eutectic solvents as new media for Candida antarctica B lipase catalyzed reactions[J]. Process Biochemistry, 2012, 47(12):2081-2089. [9] SHAHBAZ K, MJALLI F S, HASHIM M A, et al. Using deep eutectic solvents based on methyl triphenylphosphunium bromide for the removal of glycerol from palm-oil-based biodiesel[J]. Energy & Fuels, 2011, 25(6):2671-2678. [10] KAREEM M A, MJALLI F S, HASHIM M A, et al. Phase equilibria of toluene/heptane with tetrabutylphosphonium bromide based deep eutectic solvents for the potential use in the separation of aromatics from naphtha[J]. Fluid Phase Equilibria, 2012, 333:47-54. [11] SHAHBAZ K, MJALLI F S, HASHIM M A, et al. Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst[J]. Separation and Purification Technology, 2011, 81(2):216-222. [12] ABO-HAMAD A, HAYYAN M, ALSAADI M A, et al. Potential applications of deep eutectic solvents in nanotechnology[J]. Chemical Engineering Journal, 2015, 273:551-567. [13] GAGE S H, RUDDY D A, PYLYPENKO S, et al. Deep eutectic solvent approach towards nickel/nickel nitride nanocomposites[J]. Catalysis Today, 2018, 306:9-15. DOI:10.1016/j.cattod.2016. 12.016. [14] PASUPATHY A, VELRAJ R, SEENIRAJ R V. Phase change material-based building architecture for thermal management in residential and commercial establishments[J]. Renewable and Sustainable Energy Reviews, 2008, 12(1):39-64. [15] PAN Y, ALAM M A, WANG Z M, et al. Enhanced esterification of oleic acid and methanol by deep eutectic solvent assisted Amberlyst heterogeneous catalyst[J]. Bioresource Technology, 2016, 220:543-548. [16] SZE L L, PANDEY S, RAVULA S, et al. Ternary deep eutectic solvents tasked for carbon dioxide capture[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(9):2117-2123. [17] SUN H, LI Y, WU X, et al. Theoretical study on the structures and properties of mixtures of urea and choline chloride[J]. Journal of Molecular Modeling, 2013, 19(6):2433-2441. [18] AISSAOUI T, BENGUERBA Y, ALNASHEF I M. Theoretical investigation on the microstructure of triethylene glycol based deep eutectic solvents:COSMO-RS and TURBOMOLE prediction[J]. Journal of Molecular Structure, 2017, 1141:451-456. [19] RADOŠEVI? K, ?URKO N, GAURINA S V, et al. Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity[J]. LWT-Food Science and Technology, 2016, 73:45-51. [20] PARADISO V M, CLEMENTE A, SUMMO C, et al. Towards green analysis of virgin olive oil phenolic compounds:extraction by a natural deep eutectic solvent and direct spectrophotometric detection[J]. Food Chemistry, 2016, 212:43-47. [21] LI L, LIU J, LUO M, et al. Efficient extraction and preparative separation of four main isoflavonoids from Dalbergiaodorifera T. Chen leaves by deep eutectic solvents-based negative pressure cavitation extraction followed by macroporous resin column chromatography[J]. Journal of Chromatography B, 2016, 1033/1034:40-48. [22] BAJKACZ S, ADAMEK J. Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products[J]. Talanta, 2017, 168:329-335. [23] HUANG Y, FENG F, JIANG J, et al. Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents[J]. Food Chemistry, 2017, 221:1400-1405. [24] LIN Z, HOU Y, REN S, et al. Phase equilibria of phenol+toluene+quaternary ammonium salts for the separation of phenols from oil with forming deep eutectic solvents[J]. Fluid Phase Equilibria, 2016, 429:67-75. [25] LI C P, ZHANG J, LI Z, et al. Extraction dessulfurization of fuels with ‘Metal Ions’ based deep eutectic solvents (MDESs)[J]. Green Chemistry, 2016, 18(13):3789-3795. [26] RAHMA W S A, MJALLI F S, AL-WAHAIBI T, et al. Polymeric-based deep eutectic solvents for effective extractive dessulfurization of liquid fuel at ambient conditions[J]. Chemical Engineering Research & Design, 2017, 120:271-283. [27] MAO C F, ZHAO R X, LI X P. Phenylpropanoic acid-based DESs as efficient extractants and catalysts for the removal of sulfur compounds from oil[J]. Fuel, 2017, 189:400-407. [28] FISCHER V, TOURAUD D, KUNZ W. Eco-friendly one pot synthesis of caffeic acid phenethyl ester (CAPE) via an in-situ formed deep eutectic solvent[J]. Sustainable Chemistry and Pharmacy, 2016, 4:40-45. [29] ZHANG M, LIU Y H, SHANG Z R, et al. Supported molybdenum on graphene oxide/Fe3O4:an efficient, magnetically separable catalyst for one-pot construction of spiro-oxindoledihydropyridines in deep eutectic solvent under microwave irradiation[J]. Catalysis Communications, 2016, 88:39-44. [30] JUNEIDI I, HAYYAN M, HASHIM M A, et al. Pure and aqueous deep eutectic solvents for a lipase-catalysed hydrolysis reaction[J]. Biochemical Engineering Journal, 2017, 117:129-138. [31] ZUO M, LE K, LI Z, et al. Green process for production of 5-hydroxymethylfurfural from carbohydrates with high purity in deep eutectic solvents[J]. Industrial Crops and Products, 2017, 99:1-6. [32] TAYSUN M B, SERT E, ATALAY F S. Physical properties of benzyl tri-methyl ammonium chloride based deep eutectic solvents and employment as catalyst[J]. Journal of Molecular Liquids, 2016, 223:845-852. [33] ALHASSAN Y, KUMAR N, BUGAJE I M. Catalytic upgrading of waste tire pyrolysis oil via supercritical esterification with deep eutectic solvents (green solvents and catalysts)[J]. Journal of the Energy Institute, 2016, 89(4):683-693. [34] TANG X D, ZHANG Y F, LI J J. Alkylation of thiophenic compounds catalyzed by deep eutectic solvents[J]. Catalysis Communications, 2015, 70:40-43. [35] TRAN P H, NGUYEN H T, HANSEN P E, et al. An efficient and green method for regio-and chemo-selective Friedel-Crafts acylations using a deep eutectic solvent ([CholineCl] [ZnCl2]3)[J]. RSC Advances, 2016, 6(43):37031-37038. [36] SONAWANE Y A, PHADTARE S B, BORSE B N, et al. Synthesis of diphenylamine-based novel fluorescent styryl colorants by Knoevenagel condensation using a conventional method, biocatalyst, and deep eutectic solvent[J]. Organic Letters, 2010, 12(7):1456-1459. [37] PHADTARE S B, JARAG K J, SHANKARLING G S. Greener protocol for one pot synthesis of coumarinstyryl dyes[J]. Dyes and Pigments, 2013, 97(1):105-112. [38] LIU S, NI Y, WEI W, et al. Choline chloride and urea based eutectic solvents:effective catalytic systems for the Knoevenagel condensation reactions of substituted acetonitriles[J]. Journal of Chemical Research, 2014(3):186-188. [39] HAWKINS I, HANDY S T. Synthesis of aurones under neutral conditions using a deep eutectic solvent[J]. Tetrahedron, 2013, 69(44):9200-9204. [40] HARISHKUMAR H N, MAHADEVAN K M, KUMAR H C K, et al. A facile, choline chloride/urea catalyzed solid phase synthesis of coumarins via Knoevenagel condensation[J]. Organic Communications, 2011, 4(2):26-32. [41] KESHAVARZIPOUR F, TAVAKOL H. The synthesis of coumarin derivatives using choline chloride/zinc chloride as a deep eutectic solvent[J]. Journal of the Iranian Chemical Society, 2016, 13(1):149-153. [42] TIECCO M, GERMANI R, CARDELLINI F. Carbon-carbon bond formation in acid deep eutectic solvent:chalcones synthesis via Claisen-Schmidt reaction[J]. RSC Advances, 2016, 6(49):43740-43747. [43] IMPERATO G, EIBLER E, NIEDERMAIER J, et al. Low-melting sugar-urea-salt mixtures as solvents for Diels-Alder reactions[J]. Chemical Communications, 2005(9):1170-1172. [44] ILGEN F, KOENIG B. ChemInform abstract:organic reactions in low melting mixtures based on carbohydrates and L-carnitine-a comparison[J]. Green Chemistry, 2009, 40(45):848-854. [45] CALDERON M R, TAMBYRAJAH V, JENKINS P R, et al. The regiospecific Fischer indole reaction in choline chloride·2ZnCl2 with product isolation by direct sublimation from the ionic liquid[J]. Chemical Communications, 2004, 35(19):158-159. [46] DEVI R V, GARANDE A M, BHATE P M. Synthesis of isoindolo[2,1-a]quinazoline, isoindolo[2,1-a]pyrrolo[2,1-c] quinoxalinone, and indolo[1,2-a]isoindolo[1,2-c]quinoxalinone derivatives in a deep eutectic solvent[J]. Synlett, 2016, 27:2807-2810. [47] GORE S, BASKARAN S, KOENIG B. Efficient synthesis of 3, 4-dihydropyrimidin-2-ones in low melting tartaric acid-urea mixtures[J]. Green Chemistry, 2011, 13(4):1009-1013. [48] GORE S,BASKARAN S,KOENIG B. Synthesis of pyrimidopyrimidinediones in a deep eutectic reaction mixture[J]. Advanced Synthesis & Catalysis, 2012, 354(13):2368-2372. [49] SUN G, HOU J, DOU J, et al. Xanthan sulfuric acid as an efficient biodegradable and recyclable catalyst for the one-pot synthesis of α-amino phosphonates[J]. Journal of the Chinese Chemical Society, 2010, 57(6):1315-1320. [50] SOBHANI S, FALATOONI Z M, HONARMAND M. Synthesis of phosphoric acid supported on magnetic core-shell nanoparticles:a novel recyclable heterogeneous catalyst for Kabachnik-Fields reaction in water[J]. RSC Advances, 2014, 4(30):15797-15806. [51] DISALE S T, KALE S R, KAHANDAL S S, et al. Choline chloride·2ZnCl2 ionic liquid:an efficient and reusable catalyst for the solvent free Kabachnik-Fields reaction[J]. Tetrahedron Letters, 2012, 53(18):2277-2279. [52] KESHAVARZIPOUR F, TAVAKOL H. Deep eutectic solvent as a recyclable catalyst for three-component synthesis of β-amino carbonyls[J]. Catalysis Letters, 2015, 145(4):1062-1066. [53] AZIZI N, EDRISI M. Deep eutectic solvent immobilized on SBA-15 as a novel separable catalyst for one-pot three-component Mannich reaction[J]. Microporous and Mesoporous Materials, 2017, 240:130-136. [54] AZIZI N, EDRISI M. Multicomponent reaction in deep eutectic solvent for synthesis of substituted 1-aminoalkyl-2-naphthols[J]. Research on Chemical Intermediates, 2017, 43(1):379-385. [55] PENG H, HU Y L, XING R, et al. Choline-based biodegradable ionic liquid catalyst for Mannich-type reaction[J]. Journal of Chemical Sciences, 2016, 128(12):1855-1860. [56] SHAHABI D, TAVAKOL H. One-pot synthesis of quinoline derivatives using choline chloride/tin(Ⅱ) chloride deep eutectic solvent as a green catalyst[J]. Journal of Molecular Liquids, 2016, 220:324-328. [57] AZIZI N, KHAJEH M, ALIPOUR M. Rapid and selective oxidation of alcohols in deep eutectic solvent[J]. Industrial & Engineering Chemistry Research, 2014, 53(40):15561-15565. [58] KOLTHOFF I M, MEDALIA A I, RAAEN H P. The reaction between ferrous iron and peroxides. IV. Reaction with potassium persulfate[J]. Journal of the American Chemical Society, 1951, 73(4):1733-1739. [59] AZIZI N, BATEBI E, BAGHERPOUR S, et al. Natural deep eutectic salt promoted regioselective reduction of epoxides and carbonyl compounds[J]. RSC Advances, 2012, 2(6):2289-2293. [60] XU P, XU Y, LI X, et al. Enhancing asymmetric reduction of 3-chloropropiophenone with immobilized acetobacter sp. CCTCC M209061 cells by using deep eutectic solvents as cosolvents[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(4):718-724. [61] RUDKO G Y, KOVALCHUK A O, FEDIV V I, et al. Role of the host polymer matrix in light emission processes in nano-CdS/poly vinyl alcohol composite[J]. Thin Solid Films, 2013, 543:11-15. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[4] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[5] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[8] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[9] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[10] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[11] | QIAN Sitian, PENG Wenjun, ZHANG Xianming. Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816. |
[12] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[13] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |