[1] 赵永志,蒙波,陈霖新,等. 氢能源的利用现状分析[J]. 化工进展,2015,34(9):3248-3255. ZHAO Y Z,MENG B,CHEN L X,et al. Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progress,2015,34(9):3248-3255.
[2] ORIANI R A,JOSEPHIC P H. Equilibrium aspects of hydrogen-induced cracking of steels[J]. Scripta Metallurgica,1974,22(9):1065-1074.
[3] PAINTER C L F G S. First principles investigation of hydrogen embrittlement in FeAl[J]. Journal of Materials Research,1991,6(4):719-723.
[4] ORIANI R A,JOSEPHI P H. Equilibrium and kinetic studies of the hydrogen-assisted cracking of steel[J]. Acta Metallurgica,1977,24(9):979-988.
[5] JIANG D E,CARTER E A. First principles assessment of ideal fracture energies of materials with mobile impurities:implications for hydrogen embrittlement of metals[J]. Acta Materialia,2004,52(16):4801-4807.
[6] BEACHEM C D. A new model for hydrogen-assisted cracking (hydrogen "embrittlement")[J]. Metallurgical Transactions,1972,3(3):441-455.
[7] ROBERTSON I M,BIRNBAUM H K. An HVEM study of hydrogen effects on the deformation and fracture of nickel[J]. Acta Metallurgica,1986,34(3):353-366.
[8] LYNCH S P. Environmentally assisted cracking:overview of evidence for an adsorption-induced localised-slip process[J]. Acta Metallurgica,1988,36(10):2639-2661.
[9] BIRNBAUM H K,SOFRONIS P. Hydrogen-enhanced localized plasticity:a mechanism for hydrogen-related fracture[J]. Materials Science & Engineering A,1994,176(1-2):191-202.
[10] PEZOLD J V,LYMPERAKIS L,NEUGEBAUER J. Hydrogen-enhanced local plasticity at dilute bulk H concentrations:the role of H-H interactions and the formation of local hydrides[J]. Acta Materialia,2011,59(8):2969-2980.
[11] SONG J,CURTIN W A. Mechanisms of hydrogen-enhanced localized plasticity:an atomistic study using α-Fe as a model system[J]. Acta Materialia,2014,68:61-69.
[12] SCHLICHTING H,MENZEL D. Techniques for wide range,high resolution and precision,thermal desorption measurements:I. Principles of apparatus and operation[J]. Surface Science,1993,285(3):209-218.
[13] TAYLOR J B. The evaporation of atoms,ions and electrons from caesium films on tungsten[J]. Thermionic Phenomena,1961,44(6):423-458.
[14] SCHLICHTING H,MENZEL D. High resolution,wide range,thermal desorption spectrometry of rare gas layers:sticking,desorption kinetics,layer growth,phase transitions,and exchange processes[J]. Surface Science,1992,272(1):27-33.
[15] YABUMOTO N,MINEGISHI K,KOMINE Y,et al. Water-adsorbed states on silicon and silicon oxide surfaces analyzed by using heavy water[J]. Japanese Journal of Applied Physics,1990,29:490-493.
[16] MENDELSOHN M H,GRUEN D M. Temperature-programmed desorption(TPD)studies of ZrV1.6Fe0.4Hy and ZrV1.2Cr0.8Hy[J]. Materials Research Bulletin,1981,16(8):1027-1034.
[17] MATSUDA F,NAKAGAWA H,MATSUMOTO T. Dynamic observation with scanning electron microscope(SEM)of hydrogen-induced cracking in high strength steel weldments[J]. Transactions of JWRI,1979,8(2):293-296.
[18] RIGSBEE J M,JUN R B B. A TEM investigation of hydrogen-induced deformation twinning and associated martensitic phases in 304-type stainless steel[J]. Journal of Materials Science,1977,12(2):406-409.
[19] CHEN Q Z,CHU W,QIAO L,et al. TEM in situ observation of brittle cracking of hydrogen charged 310 stainless steel under tension[J]. Acta Metallrugica Sinica,1994,30(6):248-256.
[20] KLIMENKOV M. TEM study of hydrogen-containing precipitates in Al-containing ODS steel[J]. Journal of Nuclear Materials,2011,417(1):197-200.
[21] MINKOVITZ E,TALIANKER M,ELIEZER D. TEM investigation of hydrogen induced ε-hcp-martensite in 316L-type stainless steel[J]. Journal of Materials Science,1981,16(12):3506-3508.
[22] VENEGAS V,CALEYO F,GONZ LEZ J L,et al. EBSD study of hydrogen-induced cracking in API-5 L-X46 pipeline steel[J]. Scripta Materialia,2005,52(2):147-152.
[23] 钟振前,田志凌,杨春. EBSD技术在研究高强马氏体不锈钢氢脆机理中的应用[J]. 材料热处理学报,2015,36(2):77-83. ZHONG Z Q,TIAN Z L,YANG C. Application of EBSD technique in research of hydrogen embrittlement mechanism for high strength martensite stainless steel[J]. Transactions of Materials & Heat Treatment,2015,36(2):77-83.
[24] TSYGEL'NYI I M,VITVITSKⅡ V I,TKACHEV V I,et al. Phase transformations in steel 12Kh18N10T upon low-cycle loading in the presence of hydrogen[J]. Metal Science & Heat Treatment,1984,26(6):419-422.
[25] WEN M,ZHANG L,AN B,et al. Hydrogen-enhanced dislocation activity and vacancy formation during nanoindentation of nickel[J]. Physical Review B,2009,80(9):754-758.
[26] HU Z,FUKUYAMA S,YOKOGAWA K,et al. Hydrogen embrittlement of a single crystal of iron on a nanometre scale at a crack tip by molecular dynamics[J]. Modelling & Simulation in Materials Science & Engineering,1999,7(4):541-551.
[27] SEKI S,MATSUMOTO R,INOUE Y,et al. Development of EAM potential for Fe with pseudo-hydrogen effects and molecular dynamics simulation of hydrogen embrittlement[J]. Journal of the Society of Materials Science Japan,2012,61(2):175-182.
[28] TSUCHIDA Y. Change in state of hydrogen in high strength martensitic steel after hydrogen susceptibility tests of SSRT and CSRT[J]. Journal of Japan High Pressure Institute,2014,52(6):315-322.
[29] XU H,XIA X,HUA L,et al. Evaluation of hydrogen embrittlement susceptibility of temper embrittled 2.25Cr-1Mo steel by SSRT method[J]. Engineering Failure Analysis,2012,19:43-50.
[30] WANG M,AKIYAMA E,TSUZAKI K. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test[J]. Corrosion Science,2007,49(11):4081-4097.
[31] HADAM U,ZAKROCZYMSKI T. Absorption of hydrogen in tensile strained iron and high-carbon steel studied by electrochemical permeation and desorption techniques[J]. International Journal of Hydrogen Energy,2009,34(5):2449-2459.
[32] AKIYAMA E,LI S. Electrochemical hydrogen permeation tests under galvanostatic hydrogen charging conditions conventionally used for hydrogen embrittlement study[J]. Corrosion Reviews,2016,34(1-2):103-112.
[33] MOHTADI-BONAB M A,KARIMDADASHI R,ESKANDARI M,et al. Hydrogen-induced cracking assessment in pipeline steels through permeation and crystallographic texture measurements[J]. Journal of Materials Engineering & Performance,2016,25(5):1-13.
[34] ISHIKAWA N,SUEYOSHI H,NAGAO A. Hydrogen microprint analysis on the effect of dislocations on grain boundary hydrogen distribution in steels[J]. ISIJ International,2016,56(3):413-417.
[35] KOYAMA R,ITOH G. Hydrogen emission at grain boundaries in tensile-deformed Al-9%Mg alloy by hydrogen microprint technique[J]. Transactions of Nonferrous Metals Society of China,2014,24(7):2102-2106.
[36] YALÇÌE H K,EDMONDS D V. Application of the hydrogen microprint and the microautoradiography techniques to a duplex stainless steel[J]. Materials Characterization,1995,34(2):97-104.
[37] AOKI M,SAITO H,MORI M,et al. Deformation microstructures of a low carbon steel characterized by tritium autoradiography and thermal desorption spectroscopy[J]. Journal of the Japan Institute of Metals-Nihon Kinzoku Gakkaishi,1994,58(10):1141-1148.
[38] FERNANDEZ J F,CUEVAS F,SANCHEZ C. Simultaneous differential scanning calorimetry and thermal desorption spectroscopy measurements for the study of the decomposition of metal hydrides[J]. Journal of Alloys & Compounds,2000,298(1-2):244-253.
[39] 李阳,张永健,惠卫军,等. 1500MPa级高强度钢42CrMoVNb的氢吸附行为[J]. 金属学报,2011,32(4):423-428. LI Y,ZHANG Y J,HUI W J,et al. Hydrogen absorption behavior of 1500 MPa grade high strength steel 42CrMoVNb[J]. Acta Metallurgica Sinica,2011,32(4):423-428.
[40] 张永健,惠卫军,董瀚. 一种低碳Mn-B系超高强度钢板热成形后的氢致延迟断裂行为[J]. 金属学报,2013,34(10):1153-1159. ZHANG Y J,HUI W J,DONG H. Hydrogen induced delayed fracture behavior of a low-carbon Mn-B type ultra-high strength steel sheet after hot stamping[J]. Acta Metallurgica Sinica,2013,34(10):1153-1159.
[41] 郭昀静,王春芳,李建锡,等. 利用TDS研究二次硬化钢中氢的扩散行为[J]. 航空材料学报,2012,32(3):5-9. GUO J J,WANG C F,LI J X,等. Study on diffusion behavior of hydrogen in secondary hardened steel by TDS[J]. Journal of Aeronautical Materials,2012,32(3):5-9.
[42] 孙永伟,陈继志,刘军. 1000MPa级0Cr16Ni5Mo钢的氢脆敏感性研究[J]. 金属学报,2015,36(11):1315-1324. SUN Y W,CHEN J Z,LIU J. Study on hydrogen embrittlement susceptibility of 1000 MPa grade 0Cr16Ni5Mo steel[J]. Journal of Aeronautical Materials,2015,36(11):1315-1324.
[43] NAGUMO M,TAKAI K,OKUDA N. Nature of hydrogen trapping sites in steels induced by plastic deformation[J]. Journal of Alloys & Compounds,1999,293-295(99):310-316.
[44] BARBE L,SAMEK L,VERBEKEN K,et al. Neutron diffraction analysis of martensite ageing in high-carbon FeCMnSi steel[J]. International Journal of Materials Research,2006,97(8):1123-1129.
[45] BANERJEE K,CHATTERJEE U K. Hydrogen permeation and hydrogen content under cathodic charging in HSLA 80 and HSLA 100 steels[J]. Scripta Materialia,2001,44(2):213-216.
[46] BENTLEY A P,SMITH G C. Phase transformation of austenitic stainless steels as a result of cathodic hydrogen charging[J]. Metallurgical & Materials Transactions A,1986,17(9):1593-1600.
[47] YAN M,WENG Y. Study on hydrogen absorption of pipeline steel under cathodic charging[J]. Corrosion Science,2006,48(2):432-444.
[48] MIZUNO M,ANZAI H,AOYAMA T,et al. Determination of hydrogen concentration in austenitic stainless steels by thermal desorption spectroscopy[J]. Materials Transactions,1994,35(10):703-303
[49] MINE Y,HORITA Z,MURAKAMI Y. Effect of hydrogen on martensite formation in austenitic stainless steels in high-pressure torsion[J]. Acta Materialia,2009,57(10):2993-3002.
[50] BECHTLE S,KUMAR M,SOMERDAY B P,et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials[J]. Acta Materialia,2009,57(14):4148-4157.
[51] NIBUR K A,SOMERDAY B P,BALCH D K,et al. The role of localized deformation in hydrogen-assisted crack propagation in 21Cr-6Ni-9Mn stainless steel[J],Acta Materialia,2009,55(13):3795-3809.
[52] ESCOBAR D P,DUPREZ L,ATRENS A,et al. Influence of experimental parameters on thermal desorption spectroscopy measurements during evaluation of hydrogen trapping[J]. Journal of Nuclear Materials,2014,450(1-3):32-41.
[53] WEI F G,TSUZAKI K. Quantitative analysis on hydrogen trapping of TiC particles in steel[J]. Metallurgical and Materials Transactions A,2006,37(2):331-353.
[54] BHARGAVA G,GOUZMAN I,CHUN C M,et al. Characterization of the "native" surface thin film on pure polycrystalline iron:a high resolution XPS and TEM study[J]. Applied Surface Science,2007,253(9):4322-4329.
[55] BRUNDLE C R,CHUANG T J,WANDELT K,et al. Core and valence photoemission studies of iron oxide surfaces and the oxidation of iron[J]. Surface Science,1977,68(1):459-468.
[56] LIN T C. A consistent method for quantitative XPS peak analysis of thin oxide films on clean polycrystalline iron surfaces[J]. Applied Surface Science,1997,119(1):83-92.
[57] MATHIEU H J,DATTA M,LANDOLT D. Thickness of natural oxide films determined by AES and XPS with/without sputtering[J]. Journal of Vacuum Science & Technology A,1985,3(2):331-335.
[58] ARONNIEMI M,LAHTINEN J,HAUTOJ RVI P. Characterization of iron oxide thin films[J]. Surface & Interface Analysis,2004,36(8):1004-1006.
[59] LEE S M,LEE J Y. The trapping and transport phenomena of hydrogen in nickel[J]. Metallurgical & Materials Transactions A,1986,17:181-187.
[60] ONO K,MESHⅡ M. Hydrogen detrapping from grain boundaries and dislocations in high purity iron[J]. Acta Metallurgica Et Materialia,1992,40(6):1357-1364.
[61] TURNBULL A,HUTCHINGS R B,FERRISS D H. Modelling of thermal desorption of hydrogen from metals[J]. Materials Science & Engineering A,1997,238(2):317-328.
[62] KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytical chemistry,2002,29(11):1702-1706.
[63] CHOO W Y,LEE J Y. Thermal analysis of trapped hydrogen in pure iron[J]. Metallurgical & Materials Transactions A,1981,13(1):135-140.
[64] WILSON K L,BASKES M I. Deuterium trapping in irradiated 316 stainless steel[J]. Journal of Nuclear Materials,1978,76(1-2):291-297.
[65] WEI F G,HARA T,TSUZAKI K. Precise determination of the activation energy for desorption of hydrogen in two Ti-added steels by a single thermal-desorption spectrum[J]. Metallurgical & Materials Transactions B,2004,35:587-597.
[66] ORIANI R A. The diffusion and trapping of hydrogen in steel[J]. Acta Metallurgica,1970,18(1):147-157.
[67] LEE J L,LEE J Y. Hydrogen trapping in AISI 4340 steel[J]. Metal Science,2013,17(9):426-432.
[68] LEE J Y. Hydrogen trapping phenomena in metals with B.C.C. and F.C.C. crystal structures by thermal analysis technique[J]. Zeitschrift Für Physikalische Chemie,1985,146(2):242.
[69] SUN Y W,CHEN J Z,LIU J. Hydrogen trapping in high strength 0Cr16Ni5Mo martensitic stainless steel[J]. Journal of Central South University,2015,22(11):4128-4136.
[70] DIETZEL W. Gaseous hydrogen embrittlement of materials in energy technologies[M]. Cambridge:Woodhead Publishing,2012:41.
[71] OUDRISS A,CREUS J,BOUHATTATE J,et al. Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel[J]. Acta Materialia,2012,60(19):6814-6828.
[72] OUDRISS A,CREUS J,BOUHATTATE J,et al. The diffusion and trapping of hydrogen along the grain boundaries in polycrystalline nickel[J]. Scripta Materialia,2012,66(1):37-40.
[73] IZUMI T,ITOH G,HORIKAWA S. Thermal desorption spectroscopy study on the hydrogen trapping states in a pure aluminum[J]. Materials Transactions,2011,52(2):130-134.
[74] SAITOH H,ⅡJIMA Y,HIRANO K. Behaviour of hydrogen in pure aluminium,Al-4 mass% Cu and Al-1 mass% Mg 2 Si alloys studied by tritium electron microautoradiography[J]. Journal of Materials Science,1994,29(21):5739-5744.
[75] OUTLAW R A,PETERSON D T,SCHMIDT F A. Diffusion of hydrogen in pure large grain aluminum[J]. Scripta Metallurgica,1982,16:287-292.
[76] ANYALEBECHI P N. Hydrogen diffusion in Al-Li alloys[J]. Metallurgical and Materials Transactions B,1990,21(4):649-655.
[77] SMITH S W,SCULLY J R. The identification of hydrogen trapping states in an Al-Li-Cu-Zr alloy using thermal desorption spectroscopy[J]. Metallurgical & Materials Transactions A,2000,31:179-193.
[78] FRAPPART S,FEAUGAS X,CREUS J,et al. Study of the hydrogen diffusion and segregation into Fe-C-Mo martensitic HSLA steel using electrochemical permeation test[J]. Journal of Physics & Chemistry of Solids,2010,71(10):1467-1479.
[79] AKIYAMA E,LI S,SHINOHARA T,et al. Hydrogen entry into Fe and high strength steels under simulated atmospheric corrosion[J]. Electrochimica Acta,2011,56(4):1799-1805. |