Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (03): 1427-1433.DOI: 10.16085/j.issn.1000-6613.2018-0610
Previous Articles Next Articles
Weiyi CUI1(),Shenggong WANG2,Linlin WANG2,Junqi DAI2,Naidi TAN2()
Received:
2018-03-26
Revised:
2018-06-26
Online:
2019-03-05
Published:
2019-03-05
Contact:
Naidi TAN
通讯作者:
谭乃迪
作者简介:
基金资助:
CLC Number:
Weiyi CUI,Shenggong WANG,Linlin WANG,Junqi DAI,Naidi TAN. Pt-Fe/ Al2O3 catalysts for removal of formaldehyde at ambient temperature[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1427-1433.
崔维怡,王圣公,王琳琳,戴俊琦,谭乃迪. 负载型Pt-Fe/Al2O3催化剂用于室温催化氧化甲醛[J]. 化工进展, 2019, 38(03): 1427-1433.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0610
催化剂 | Pt 质量分数/% | 比表面积 /m2?g-1 | 孔容 /m3?g-1 | 孔直径 /nm | |
---|---|---|---|---|---|
理论 | 实际 | ||||
γ-Al2O3 | 170 | 0.23 | 6.0 | ||
TiO2 | 51 | 0.18 | 16.4 | ||
Co3O4 | 48 | 0.36 | 19.1 | ||
Ni2O3 | 37 | 0.26 | 16.9 | ||
Pt-Fe/Al2O3 | 2 | 1.48 | 103 | 0.17 | 6.6 |
Pt-Fe/TiO2 | 2 | 1.51 | 40 | 0.13 | 17.2 |
Pt-Fe/Co3O4 | 2 | 1.42 | 43 | 0.23 | 18.9 |
Pt-Fe/Ni2O3 | 2 | 1.36 | 21 | 0.10 | 11.8 |
催化剂 | Pt 质量分数/% | 比表面积 /m2?g-1 | 孔容 /m3?g-1 | 孔直径 /nm | |
---|---|---|---|---|---|
理论 | 实际 | ||||
γ-Al2O3 | 170 | 0.23 | 6.0 | ||
TiO2 | 51 | 0.18 | 16.4 | ||
Co3O4 | 48 | 0.36 | 19.1 | ||
Ni2O3 | 37 | 0.26 | 16.9 | ||
Pt-Fe/Al2O3 | 2 | 1.48 | 103 | 0.17 | 6.6 |
Pt-Fe/TiO2 | 2 | 1.51 | 40 | 0.13 | 17.2 |
Pt-Fe/Co3O4 | 2 | 1.42 | 43 | 0.23 | 18.9 |
Pt-Fe/Ni2O3 | 2 | 1.36 | 21 | 0.10 | 11.8 |
催化剂 | 负载量 (质量分数)/% | 甲醛浓度 /mg·m–3 | 空速 /mL·h?1·g?1 | 甲醛转化效率①/% | 数据 来源 |
---|---|---|---|---|---|
Pt-Fe/Al2O3 | 2 | 375 | 60000 | 100 | 本工作 |
Pt/Fe2O3 | 1 | 375 | 60000 | 100 | [14] |
PtNi/ Al2O3 | 0.3 | 38 | 24000 | 100 | [26] |
Pt/TiO2 | 1 | 375 | 50000 | 100 | [11] |
2%Na-Pt/TiO2 | 1 | 750 | 120000 | 100 | [12] |
Pt/MnO x -CeO2 | 3 | 38 | 30000 | 100 | [27] |
Pt/MnO2 | 2 | 575 | 20000 | 41 | [16] |
Pt/ZSM-5 | 0.4 | 65 | 30000 | 100 | [28] |
Pt/ZrO2 | 1 | 125 | 60000 | 91 | [29] |
催化剂 | 负载量 (质量分数)/% | 甲醛浓度 /mg·m–3 | 空速 /mL·h?1·g?1 | 甲醛转化效率①/% | 数据 来源 |
---|---|---|---|---|---|
Pt-Fe/Al2O3 | 2 | 375 | 60000 | 100 | 本工作 |
Pt/Fe2O3 | 1 | 375 | 60000 | 100 | [14] |
PtNi/ Al2O3 | 0.3 | 38 | 24000 | 100 | [26] |
Pt/TiO2 | 1 | 375 | 50000 | 100 | [11] |
2%Na-Pt/TiO2 | 1 | 750 | 120000 | 100 | [12] |
Pt/MnO x -CeO2 | 3 | 38 | 30000 | 100 | [27] |
Pt/MnO2 | 2 | 575 | 20000 | 41 | [16] |
Pt/ZSM-5 | 0.4 | 65 | 30000 | 100 | [28] |
Pt/ZrO2 | 1 | 125 | 60000 | 91 | [29] |
1 | HUANG H B , XU Y , FENG Q Y , et al .Low temperature catalytic oxidation of volatile organic compounds:a review[J].Catalysis Science & Technology, 2015, 5: 2649-2669. |
2 | CHI C C , CHEN W D , GUO M , et al .Law and features of TVOC and formaldehyde pollution in urban indoor air[J]. Atmospheric Environment, 2016, 132:85-90. |
3 | TANG X J , BAI Y , DUONG A , et al .Formaldehyde in China:production, consumption, exposure levels, and health effects[J].Environment International, 2009, 35: 1210-1224. |
4 | MARSH G M , YOUK A O .Reevaluation of mortality risks from nasopharyngeal cancer in the formaldehyde cohort study of the national cancer institute[J].Regul Toxicol Pharmacol, 2005, 42: 275-283. |
5 | 何运兵, 纪红兵, 王乐夫 . 室内甲醛催化氧化脱除的研究进展[J].化工进展, 2007, 26(8): 1104-1109. |
HE Y B , JI H B , WANG L F .Development of the removal of indoor formaldehyde with catalytic oxidation[J].Chemical Industry and Engineering Progress, 2007, 26(8): 1104-1109. | |
6 | JHON Q T , SEBASTIEN Y , BELLAT J P , et al . Formaldehyde: catalytic oxidation as a promising soft way of elimination[J].ChemSusChem, 2013, 6: 578-592. |
7 | NIE L H , YU J G , JARONIEC M , et al .Room-temperature catalytic oxidation of formaldehyde on catalysts[J].Catalysis Science & Technology, 2016, 6: 3649-3669. |
8 | BAI B Y , QIAO Q , LI J H , et al .Progress in research on catalysts for catalytic oxidation of formaldehyde[J].Chinese Journal of Catalysis, 2016, 37: 102-122. |
9 | 李玮, 黄丽丽, 翟友存, 等 .新型 Cu-Mn/TiO2 和 Cu-Mn/γ-Al2O3甲醛催化氧化催化剂的研制及活性[J].化工进展, 2015, 34(1): 127-132. |
LI W , HUANG L L , ZHAI Y C , et al . Catalytic oxidation of formaldehyde over Cu-Mn catalysts supported on TiO2 and γ-Al2O3 dioxide[J]. Chemical Industry and Engineering Progress, 2015, 34(1): 127-132. | |
10 | 崔维怡, 惠继星, 谭乃迪 .负载型铂催化剂催化氧化甲醛的研究进展[J]. 化工进展, 2017, 36(10): 3711-3719. |
CUI W Y , HUI J X , TAN N D .Research progress on catalytic oxidation of formaldehyde over supported platinum catalysts[J].Chemical Industry and Engineering Progress, 2017, 36(10): 3711-3719. | |
11 | ZHANG C B , HE H , TANAKA K . Perfect catalytic oxidation of formaldehyde over Pt/TiO2 catalyst at room temperature[J]. Catalysis Communications, 2005, 6: 211-214. |
12 | ZHANG C B , LIU, F D, ZHAI Y P , et al . Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J]. Angewandte Chemie: International Edition, 2012, 51: 9628-9632. |
13 | CUI W Y , XUE D , YUAN X L , et al .Acid-treated TiO2 nanobelt supported platinum nanoparticles for the catalytic oxidation of formaldehyde at ambient conditions[J].Applied Surface Science, 2017, 411: 105-112. |
14 | AN N H , YU Q S , LIU G , et al . Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1392-1397. |
15 | AN N H , WU P , LI S Y , et al .Catalytic oxidation of formaldehyde over Pt/Fe2O3 catalysts prepared by different method[J].Applied Surface Science, 2013, 285P: 805-809. |
16 | YU X H , HE J H , WANG D H , et al . Facile controlled synthesis of Pt/MnO2 nanostructured catalysts and catalytic performance for oxidative decomposition of formaldehyde[J]. Journal Physical Chemistry C, 2012, 116: 851-860. |
17 | NIE L H , MENG A Y , TENG F , et al . Hierarchically macro-mesoporous flowerlike Pt/NiO composite microspheres for efficient formaldehyde oxidation at room temperature[J]. RSC Advances, 2015, 5: 83997-84003. |
18 | YAN Z X , XU Z H , YU J G , et al . Highly active mesoporous ferrihydrite supported Pt catalyst for formaldehyde removal at room temperature[J]. Environmental Science & Technology, 2015, 49: 6637-6644. |
19 | ZHANG Z R , HICKS W R , PAULY T R , et al . Mesostructured forms of γ-Al2O3 [J]. Journal of the American Chemical Society, 2002, 124: 1592-1593. |
20 | WANG L F, SAKURAI M, KAMEYAMA H, Study of catalytic decomposition of formaldehyde on Pt/TiO2 alumite catalyst at ambient temperature[J].Journal of Hazardous Materials, 2009, 167: 399-405. |
21 | NIE L H , MENG A Y , YU J G , et al . Hierarchically macro-mesoporous Pt/γ-Al2O3 composite microspheres for efficient formaldehyde oxidation at room temperature[J]. Scientific Reports, 2013, 3: 1-6. |
22 | XU Z H , YU J G , JARONIEC M . Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt[J]. Applied Catalysis B: Environmental, 2015, 163: 306-312. |
23 | ZHU X F , YU J G , JIANG C J , et al . Enhanced room-temperature HCHO decomposition activity of highly-dispersed Pt/Al2O3 hierarchical microspheres with exposed{110} facets[J].Journal of Industrial and Engineering Chemistry, 2017, 45: 197-205. |
24 | CHEN B B , ZHU X B , CROCKER M , et al . Complete oxidation of formaldehyde at ambient temperature over γ-Al2O3 supported Au catalyst[J]. Catalysis Communications, 2013,42: 93-97. |
25 | ZHAO D Z , SHI C , LI X S , et al . Enhanced effect of water vapor on complete oxidation of formaldehyde in air with ozone over MnO x catalysts at room temperature[J]. Journal of Hazardous Materials, 2012, 239/240: 362-369. |
26 | LI S Y , LIU G , LIAN H L , et al . Low-temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method[J].Catalysis Communications, 2008, 9: 1045-1049. |
27 | TOMITA A , SHIMIZU K , KATO K , et al . Mechanism of low-temperature CO oxidation on Pt/Fe-containing alumina catalysts pretreated with water[J]. Journal of Physical Chemistry C, 2013, 117, 1268-1277. |
28 | YANG T F , HUO Y , LIU Y , et al . Efficient formaldehyde oxidation over nickel hydroxide promoted Pt/γ-Al2O3 with a low Pt content[J].Applied Catalysis B: Environmental, 2017, 200: 543-551. |
29 | TANG X F , CHEN J L , HUANG X M , et al . Pt/MnO x -CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature[J]. Applied Catalysis B: Environmental, 2008, 81: 115-121. |
30 | CHEN H Y , RUI Z B , WANG X Y , et al . Multifunctional Pt/ZSM-5 catalyst for complete oxidation of gaseous formaldehyde at ambient temperature[J]. Catalysis Today, 2015, 258: 56-63. |
31 | YANG X Q , YU X L , LIN M Y , et al . Interface effect of mixed phase Pt/ZrO2 catalysts for HCHO oxidation at ambient temperature[J]. Journal of Materials Chemistry A, 2017, 5: 13799-13806. |
32 | JIA J F , SHEN J Y , LIN L W , et al . A study on reduction behaviors of the supported platinum-iron catalysts[J]. Journal of Molecular Catalysis A: Chemical,1999, 138: 177-184. |
33 | AN N H , DUCHESNE P N , LI S Y , et al . Size effects of platinum colloid particles on the structure and CO oxidation properties of supported Pt/Fe2O3 catalysts[J]. Journal Physical Chemistry C, 2013, 117: 21254-21262. |
34 | WANG X D , YU H B , HUA D Y , et al . Enhanced catalytic hydrogenation activity and selectivity of Pt-M x O y /Al2O3 (M=Ni, Fe, Co) heteroaggregate catalysts by in situ transformation of PtM alloy nanoparticles[J]. Journal Physical Chemistry C, 2013, 117: 7294-7302. |
35 | SAKAMTO Y , HIGUCHI K , TAKAHASHI N , et al . Effect of the addition of Fe on catalytic activities of Pt/Fe/g-Al2O3 catalyst[J]. Applied Catalysis B: Environmental, 1999, 23:159-167. |
36 | IVANOVA A S , SAVINSKAYAl E M , GULYAEV R V , et al . Metal- support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation[J].Applied Catalysis B: Environmental,2010,97:57-71. |
37 | FUKINO T ,JOO H, HISADA Y ,et al .Manipulation of discrete nanostructures by selective modulation of noncovalent forces[J].Science, 2014, 344: 495-499. |
38 | LANDON J , DEMETER E , INOGLU N , et al . Spectroscopic characterization of mixed Fe-Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes[J]. ACS Catalysis, 2012, 2:1793-1801. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[4] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[5] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[8] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[9] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[10] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[11] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[12] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
[13] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[14] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |