Chemical Industry and Engineering Progree ›› 2016, Vol. 35 ›› Issue (06): 1575-1586.DOI: 10.16085/j.issn.1000-6613.2016.06.001
• Chemical processes and equipments • Previous Articles Next Articles
YANG Heqin1, LIU Zhicheng1, XIE Zaiku2
Received:
2016-03-07
Revised:
2016-03-11
Online:
2016-06-05
Published:
2016-06-05
杨贺勤1, 刘志成1, 谢在库2
通讯作者:
谢在库,教授,研究方向为多孔催化材料与石油化工催化。E-mail:xzk@sinopec.com。
作者简介:
杨贺勤(1978-),女,博士;刘志成(1975-),男,博士(共同第一作者)。
基金资助:
CLC Number:
YANG Heqin, LIU Zhicheng, XIE Zaiku. Review of recent development of green chemical technologies[J]. Chemical Industry and Engineering Progree, 2016, 35(06): 1575-1586.
杨贺勤, 刘志成, 谢在库. 绿色化工技术研究新进展[J]. 化工进展, 2016, 35(06): 1575-1586.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2016.06.001
[1] FUJII H. Decomposition analysis of green chemical technology inventions from 1971 to 2010 in Japan[J]. Journal of Cleaner Production,2016,112:4835-4843. [2] 何鸣元,孙予罕. 绿色碳科学——化石能源增效减排的科学基础[J]. 中国科学(化学),2011,41:925-932. [3] HE M Y,SUN Y H,HAN B X. Green carbon science: scientific basis for integrating carbon resource processing,utilization,and recycling[J]. Angew. Chem. Int. Ed.,2013,52:9620-9633. [4] HALLETT J P,WELTON T. Room-temperature ionic liquids:solvents for synthesis and catalysis[J]. Chem. Rev.,2011,111:3508-3576. [5] 徐兆瑜. 离子液体在化学反应中的应用新进展[J]. 乙醛醋酸化工,2015,178(6):20-28. [6] 李红宝. 化工节能技术及节能设备发展前景[J]. 山西化工,2010,30(6): 56-59. [7] 孙宏伟,陈建峰. 我国化工过程强化技术理论与应用研究进展[J]. 化工进展,2011,30(1):1-15. [8] 吴创之,周肇秋,阴秀丽,等. 我国生物质能源发展现状与思考[J]. 农业机械学报,2009,40(1):91-99. [9] 闵恩泽,张利雄. 生物质炼油化工产业分析报告[M]. 北京:科学出版社,2013. [10] 杜泽学,刘晓欣,江雨生,等. 近/超临界甲醇醇解油脂生产生物柴油工艺的中试[J]. 石油化工,2014,11(11):1296-1304. [11] 国产首例地沟油所炼,生物航油成功试飞[EB/OL] http://it.sohu.com/20130424/n373883243.shtml. [12] STUMBORG M,WONG A ,HOGAN E. Hydroprocessed vegetable oils for diesel fuel improvement[J]. Bioresource Technology,1996 ,56 (1):13-18. [13] 亓荣彬,王玉军,朴香兰. 一种集成加氢制备生物柴油的方法:101029245[P] . 2007-09-05. [14] 姚志龙. 脂肪酸甲酯超临界加氢制备脂肪醇新工艺研究[D]. 北京:中国石化石油化工科学研究院,2008. [15] ZHOU J X. Development and future of full green chemical industry[J]. Chemical Engineering Design,2010,20(1):3-7. [16] OWENS G S,ABU-OMAR M M. A tetraazaporphyrin with an intense,broad near-IR band[J].Chemistry Communication,2001(2):165-166. [17] MADEIRA L R,VAN R F,SEDDON K R. Lipase-catalyzed reactions in ionic liquids[J].Organic Letter,2000,2:4189-4191. [18] FARRELL A E,PLEVIN R J,TURNER B T,et al. Ethanol can contribute to energy and environmental goals[J]. Science,2006,311:506-508. [19] HUBER GEORGE W, CHENG Y T. Catalytic pyrolysis of solid biomass and related biofuels,aromatic,and olefin compounds:US20090227823[P] . 2009-09-10. [20] Virent succeds in producing PX from 100% plant-based sugars[N]. Petro Chemical News,2011-06-18:1. [21] JI N,ZHANG T,ZHENG M Y,et al. Direct Catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew. Chem. Int. Ed.,2008 ,47(44):8510-8513. [22] WANG A Q ,ZHANG T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts[J]. Acc. Chem. Res.,2013,46(7):1377-1386. [23] LUO C,WANG S,LIU H C. Cellulose conversion to polyols catalyzed by reversibly-formed acids and supported ruthenium clusters in hot water[J]. Angew. Chem. Int. Ed.,2007,46:7636-7639. [24] YAN N,ZHAO C,LUO C,et al. One step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst[J]. J. Am. Chem. Soc.,2006,128:8714-8715. [25] WANG Y,WANG B,DENG W,et al. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water[J]. Nature Comm.,2013,4: 2141-2141. [26] DENG Y H,FENG X J,ZHOU M S,et al. Investigation of aggregation and assembly of alkali lignin using iodine as a probe[J]. Biomacromolecules,2011,12:1116-1125. [27] OUYANG X P, DENG Y H, QIAN Y, et al. Adsorption characteristics of lignosulfonates in salt-free and salt-added aqueous solutions[J]. Biomacromolecules,2011,12(9):3313-3320. [28] QIU X Q,ZHOU M S,YANG D J,et al. Evaluation of sulphonated acetone-formaldehyde (SAF) used in coal water slurries prepared from different coals[J]. Fuel,2007,86:1439-1445. [29] XIA Q N ,CUAN Q,LIU X H,et al. Pd/NbOPO4 multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans[J]. Angew. Chem. Int. Ed.,2014,53(37):9755–9760. [30] 孙斌,程时标,孟祥堃,等.己内酰胺绿色生产技术[J]. 中国科学(化学),2014,44(1):40-45. [31] 金国杰,高焕新,杨洪云,等. 后合成Ti/HMS催化剂的表征及对丙烯的催化环氧化性能研究[J]. 分子催化,2010,24(1):6-11. [32] 李军,高爽,奚祖威. 反应控制相转移催化研究的进展[J]. 催化学报,2010,31:895-911. [33] 李奕川,沈本贤,肖卫国,等.千吨级丙烯直接环氧化制环氧丙烷工业试验[J]. 石油炼制与化工,2013,44:8-12. [34] 姜杰. HPPO法环氧丙烷工业试验装置HAZOP分析项目通过专家审查[J]. 安全、健康和环境,2013,13(8):12 [35] Milorad P. Dudukovic,Frontiers in reactor engineering[J]. Science,2009,325:698-701 [36] Hung C P,Liu Z C,Xu C M,et al. Effects of additives on the p roperties of chloroalum inate ionic liquids catalyst for alkylation of isobutane and butene [J]. Appl. Catal. A,2004,277(122):41243. [37] Cui J,With J D,Klusener P A A,et al. Identification of acidic species in chloroaluminate ionic liquid catalysts[J]. J. Catal.,2014,320:26–32. [38] 綦振元,李岐东.烷基化工艺的技术特点及发展状况[J]. 化工设计,2015,25(1):6-9. [39] 贾燕子,杨清河,孙淑玲,等. 渣油加氢处理过程中Mo-V/Al2O3的催化性能及协同效应[J]. 催化学报,2012,33(9):1546-1551. [40] HILDEBRANDT D,GLASSER D,HAUSBERGER B,et al. Producing transportation fuels with less work[J]. Science,2009,323:1680-1681. [41] ZHAO S,LIU X W,HUO C F,et al. Surface morphology of Hägg iron carbide (χ-Fe5C2) from ab initio atomistic thermodynamics[J]. J. Catal.,2012,294:47-53. [42] HUO C F,WU B S,GAO P,et al. The mechanism of potassium promoter:enhancing the stability of active surfaces[J]. Angew. Chem. Int. Ed.,2011,50:7403-7406. [43] DENG L J,HUO C F,LI Y W,et al. Density functional theory study on surface CxHy formation from CO activation on Fe3C(100) [J]. J. Phys. Chem. C,2010,114:21585-21592. [44] HUO C F,LI Y W,WANG J,et al. Insight into CH4 formation in iron-catalyzed Fischer-Tropsch synthesis[J].J. Am. Chem. Soc., 2009,131:14713-14721. [45] KANG J,ZHANG S,ZHANG Q,et al. Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of syngas to diesel fuel[J]. Angew. Chem. Int. Ed.,2009,48:2565-2568. [46] KANG J,CHENG K,ZHANG L,et al. Mesoporous zeolite-supported ruthenium nanoparticles ashighly selective Fischer-Tropsch catalysts for the production of C5—C11 isoparaffins[J]. Angew. Chem. Int. Ed.,2011,50: 5200-5203. [47] HUANG Y Y,GUO Y L,WANG Y B. Ethylene glycol electrooxidation on coreeshell PdCuBi nanoparticles fabricated via substitution and self-adsorption processes[J]. Journal of Power Sources,2014,249:9-12. [48] LIN L,PAN P B,ZHOU Z F,et al. Cu/SiO2 catalysts prepared by the sol-gel method for hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chin. J. Catal.,2011,32: 957-969. [49] 江镇海. 国内外合成气制乙二醇技术进展[J]. 合成技术及应用,2010,25(44):27-30. [50] 李涛. 国内合成气制乙二醇技术开发现状及思考[J]. 精细化工原料及中间体,2012,12:40-43. [51] GUO X G ,FANG G Z ,LI G,et al. Direct,nonoxidative conversion of methane to ethylene,aromatics,and hydrogen[J]. Science,2014,344(2):616–619. [52] 贾广斌,程广慧,蒋明敬,等. 空气预热器技术在齐鲁乙烯装置裂解炉的应用[J]. 齐鲁石油化工,2007,35(3):210-212. [53] 陈亮,肖剑,谢在库,等.对二甲苯结晶分离技术进展[J].现代化工,2009,29(2):10-11. [54] BP Corporation North America Inc. Energy efficient process for producing high purity paraxylene:US 6565653[P],2003-05-20. [55] 洪周,张春,吴再娟,等. 原位法制备MFI型分子筛膜及其渗透性能[J]. 南京工业大学学报,2012,34(6):22-26. [56] 徐南平,邢卫红. 一种膜过滤精制盐水的方法:200610038868.6[P]. 2009-02-11. [57] ZHONG Z X,XING W H,LIU X,et al. Fouling and regeneration of ceramic membranes used in recovering titanium silicalite-1 catalysts[J]. Journal of Membrane Science,2007,301:67-75. [58] LI W X,ZHANG X J,XING W H,et al. Hydrolysis of ethyl lactate coupled by vapor permeation using PDMS/ceramic compositemembrane [J]. Industrial & Engineering Chemistry Research,2010,49(22):11244-11249. [59] 王迪勇,王金渠,杨建华,等. 蒸气相法ZSM-5 分子筛的合成及其负载的 Mo 催化剂在甲烷芳构化中的应用[J]. Chin. J. Catal.,2012,33:1383-1388. [60] CAO Z W, JIANG H Q,LUO H X,et al. Natural gas to fuels and chemicals:improved methane aromatization in an oxygen-permeable membrane reactor[J]. Angew. Chem.Int. Ed.,2013,52:13794-13797. [61] JIN Z H,LIU S,QIN L,et al. Methane dehydroaromatization by Mo-supported MFI-type zeolite with core-shell structure[J]. Appl. Catal. A: Gen.,2013,453:295-301. [62] ZHAO H,SHAO L,CHEN J F. High-gravity process intensification technology and application[J]. Chemical Engineering Journal,2010,156:588-593. [63] WEBB C,KANG H K,MOFFAT G,et al. Magnetically stabilized fluidized bed bioreactor:a tool for improved mass transfer in immobilized enzyme systems[J]. Chemical Engineering Journal and Biochemical Engineering Journal,1996,61(3):241-246. [64] 慕旭宏,闵恩泽,宗保宁. 气液固三相磁稳定流化床的操作状态对反应结果的影响[J]. 化学反应工程与工艺,1997,13(2):198-202. [65] 孟祥堃,慕旭宏,江雨生,等. 液固磁稳定床流体力学特性[J]. 化工学报,2004,55(1):l34-l37. [66] 尧超群,乐军,赵玉潮,等. 微通道内气-液弹状流动及传质特性研究进展[J]. 化工学报,2015,66(8):2759-2766. [67] 骆广生,兰文杰,李少伟,等. 微流控技术制备功能材料的研究进展[J]. 石油化工,2010,39(1):1-6. [68] 陈光文. 微化工技术研究进展[J]. 现代化工,2007,27(10):8-13. [69] 陈自力.甲烷液相催化氧化制甲醇的工艺研究[D].西安:西北大学,2008. [70] 晏丽红.膜催化技术用于甲烷转化反应的研究进展[J].天津化工,2004,18(3):1-4. [71] 陈希慧,李树本,王永忠,等.MoO3/TiO2和WO3/TiO2光催化分子氧氧化甲烷的活性[J].分子催化,2000,14(4):245-246. [72] NOCETI R P,TAYLOR C E. Method for the photocatalytic conversion of methane:US5720858[P].,1998-02-24. [73] CHEN L,ZHANG X W,HUANG L,et al.Post-plasma catalysis for methane partial oxidation to methanol:role of copper-promoted iron oxide catalyst[J].Chemical Engineering&Technology,2010,33(12):2073-2081. [74] INDARTO A,YANG D R,PALGUNADI J,et al.Partial oxidation of methane with Cu-Zn-Al catalyst in adielectric barrier discharge[J].Chemical Engineering and Processing:Process Intensification,2008,47(5):780-786. [75] CHEN L,ZHANG X W,HUANG L,et al.Partial oxidation of methane with air for methanol production in a post-plasma[J]. Chemical Engineering and Processing:Process Intensification,2009,48(8):1333-1340. [76] CHEN L,ZHANG X W,HUANG L,et al.Application of inplasma catalysis and post-plasma catalysis for methane partial oxidation to methanol over a Fe2O3-CuO/γ-Al2O3 catalyst[J].Journal of Natural Gas Chemistry,2010,19(6):628-637. [77] JI N,ZHANG T,ZHENG M Y,et al. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew. Chem.Int. Ed.,2008,47:8510-8513. [78] LIU Y,LUO C,LIU H C. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst [J]. Angew. Chem. Int. Ed. ,2012,51:3249-3253. [79] AN D L,YE A H,DENG W P ,et al. Selective conversions of cellobiose and cellulose into gluconic acid in water medium in the presence of oxygen catalyzed by polyoxometalate-supported gold nanoparticles[J]. Chem. Eur.,J,2012,18: 2938-2947. [80] ALIREZA Rahimi,ARNE Ulbrich,JOSHUA J Coon,et al. Ormic-acid-induced depolymerization of oxidized lignin to aromatics[J]. Nature,2014,515,249-252. [81] DENG T S,CUI X J,QI Y Q ,et al. Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by ZnCl2 in water[J]. Chem Commun,2012,48:5494-5496. [82] VINIT Choudhary,SAMIR H. Mushrif,CHRISTOPHER Ho,et al. Insights into the interplay of lewis and brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media[J].J. Am. Chem. Soc., 2013,135:3997-4006. [83] HU J Y,MA J,ZHU Q G,et al. Transformation of atmospheric CO2 catalyzed by protic ionic liquids:efficient synthesis of 2-oxazolidinones[J].Angew. Chem. Int. Ed.,2015,54:5399-5403. [84] 史敬华,宋金良,张斌斌,等. 离子液体中CO2与炔醇在温和条件下高效合成-亚甲基环状碳酸酯[J]. 中国科学(化学),2014,44(1):146-152. [85] MATTHIAS W Haenel,STEPHAN Oevers,KLAUS Angermund,et al. Hall thermally stable homogeneous catalysts for alkane dehydrogenation[J]. Angew. Chem. Int. Ed.,2001,40: 3596-3600. [86] YAO W,ZHANG X,JIA X,et al. Selective catalytic transfer dehydrogenation of alkanes and heterocycles by an iridium pincer complex[J].Angew. Chem. Int. Ed.,2014,53:1390-1394. [87] HAN Z,RONG L,WU J,et al. Catalytic hydrogenation of cyclic carbonates:a practical approach from CO2 and epoxides to methanol and diols[J]. Angew. Chem. Int. Ed.,2012,51:13041-13045. [88] ZHANG L,HAN Z B ,ZHAO X Y ,et al. highly efficient ruthenium-catalyzed N-formylation of amines with H2 and CO2[J]. Angew. Chem. Int. Ed., 2015,54:6186-6189. [89] NAVARRO P M,PENA M A,FIERRO J L G. Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass[J]. Chem. Rev.,2007,107:3952-3991. [90] 谢在库,金中豪,王仰东. 基于绿色氢科学理念构筑从低碳制氢到高效储氢的氢能体系[J]. 中国科学(化学),2013,43(1):1-9. [91] FAN L S,ZENG L,LUO S W. Chemical-looping technology platform[J]. AIChE Journal,2015,61:2-22. [92] U.S. Department of Energy. A prospectus for biological H2 production.[EB/OL] http://www1.eere.energy.gov / hydrogenand fuelcells / production/pdfs/photobiological.pdf. [93] 温福宇,杨金辉,宗旭,等. 太阳能光催化制氢研究进展[J].化学进展,2009,21:2285-2302. [94] MAEDA K,DOMEN K. Photocatalytic water splitting:recent progress and future challenges[J]. J. Phys. Chem. Lett.,2010,1: 2655-2661. [95] SUN N N,WEN X,WANG F,et al. Catalytic performance and characterization of Ni-CaO-ZrO2 catalysts for dry reforming of methane[J]. Applied Surface Science,2011,257: 9169-9176. [96] LIU Z C,ZHOU J,CAO K,et al.Highly dispersed nickel loaded on mesoporous silica: one-spot synthesis strategy and high performance as catalysts for methane reforming with carbon dioxide[J]. Applied Catalysis B: Environmental ,2012,125:324-330. [97] YANG J,WANG D,LI C,et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Acc. Chem. Res.,2013,46: 1900-1909. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[3] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[4] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[5] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[6] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[7] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[8] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[9] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[10] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[11] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[12] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[13] | LYU Chao, ZHANG Xiwen, JIN Lijian, YANG Linjun. Efficient capture of CO2 by a new biphasic solvent-ionic liquid system [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3226-3232. |
[14] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[15] | WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |