[1] 高明珠. 核磁共振技术及其应用发展[J]. 信息记录材料,2011,12(3):48-49. [2] 佘安明,姚武. 基于低场核磁共振技术的水泥浆体孔结构与比表面积的原位表征[J]. 武汉理工大学学报,2013,35(10):11-15. [3] 孙振平,庞敏,俞洋,等. 减水剂对水泥浆体横向弛豫时间曲线的影响[J]. 硅酸盐学报,2011,39(3):538-542. [4] 韩冀豫. 高掺量粉煤灰水泥水化产物C-S-H凝胶聚合程度的研究[D]. 武汉:武汉理工大学,2011:2-11. [5] TAYLOR H F W. Cement chemistry[M]. USA:Thomas Telford Publishing,Thomas Telford Services Ltd.,1992:230. [6] POP A,BADEA C,ARDELEAN I. The effects of different superplasticizers and water-to-cement ratios on the hydration of gray cement using T2-NMR[J]. Applied Magnetic Resonance,2013,44(10):1223-1234. [7] 黄伟. 低场核磁共振系统的应用与研究[D]. 武汉:华西师范大学, 2014:17-27. [8] BADEA C,POP A,MATTEA C,et al. The effect of curing temperature on early hydration of gray cement via fast field cycling-NMR relaxometry[J]. Applied Magnetic Resonance,2014, 45(12):1299-1309. [9] NESTLE N. NMR relaxometry study of cement hydration in the presence of different oxidic fine fraction materials[J]. Solid State Nuclear Magnetic Resonance,2004,25(1):80-83. [10] NESTLE N,GALVOSAS P,KARGER J. Liquid-phase self-diffusion in hydrating cement pastes-results from NMR studies and perspectives for further research[J]. Cement and Concrete Research, 2007,37(3):398-413. [11] 姚武,佘安明,杨培强. 水泥浆体中可蒸发水的1H核磁共振特征及状态演变[J]. 硅酸盐学报,2009,37(10):1602-1606. [12] BOHRIS A J,GOERKE U,MCDONALD P J,et al. A broad line NMR and MRI study of water and water transport in Portland cement pastes[J]. Magnetic Resonance Imaging,1998,16(5/6):455-461. [13] 孙振平,庞敏,俞洋,等. 低场核磁共振技术在水泥基材料研究中的应用及展望[J]. 材料导报,2011,25(4):110-112. [14] TZIOTZIOU M, KARAKOSTA E, KARATASIOS I, et al. Application of 1H NMR to hydration and porosity studies of lime-pozzolan mixtures[J]. Microporous and Mesoporous Materials, 2011,139(1):16-24. [15] FRIEDEMANN K,SCHONFELDER W,STALLMACH F,et al. NMR relaxometry during internal curing of Portland cements by lightweight aggregates[J]. Materials and Structures,2008,41(10):1647-1655. |