Chemical Industry and Engineering Progree

• 工业催化 • Previous Articles     Next Articles

Steam reforming of dimethyl ether over Cu–Ni/γ-Al2O3 bi-functional catalyst:Effect of calcination temperature

ZOU Weibing1,2,PAN Xiangmin2,3,WANG Xiaolei2,4,KOU Suyuan2,3,MA Jianxin2,3   

  1. (1School of Resource and Environmental Engineering,East China University of Science and Technology,Shanghai 200237,China;2Clean Energy Automotive Engineering Center,Tongji University,Shanghai 201804,China;3 School of Automotive Studies,Tongji University,Shanghai 201804,China;4 School of Environmental Science and Engineering,Tongji University,Shanghai 200092,China)
  • Online:2011-03-05 Published:2011-03-05

Cu-Ni/?-Al2O3双功能催化剂上二甲醚水蒸气重整制氢:焙烧温度的影响

邹卫兵1,2,潘相敏2,3,王晓蕾2,4,寇素原2,3,马建新2,3   

  1. (1华东理工大学资源与环境工程学院,上海 200237;2同济大学新能源汽车工程中心,上海 201804;3同济大学汽车学院,上海 201804;4同济大学环境科学与工程学院,上海 200092)

Abstract:

2Cu-1Ni/5g-Al2O3 catalysts were prepared by the deposition precipitation method for dimethyl ether steam reformingDME SRreaction. The effect of the different calcination temperature on catalyst structure and performance was investigated by using Brunauer-Emmett-TellerBETmethodH2 temperature-programmed reductionH2-TPR),and X-ray diffractionXRD. The results showed that the effect of calcination temperature on the catalyst was remarkable. The catalyst calcined at 500 had moderate BET surface areapore volume and average pore diameter. As calcination temperature rosethe content of spinel copper increasedand the particle diameter of metal copper also increased. An appropriate calcination temperature could ensure a suitable strength of interaction between metal and carrier to achieve higher reactivity and stability. The optimum calcination temperature was 500 .

摘要:

沉积-沉淀法制备了一系列不同焙烧温度的二甲醚水蒸气重整制氢催化剂2Cu-1Ni/5g-Al2O3(摩尔比),考察了焙烧温度对催化剂2Cu-1Ni/5g-Al2O3的结构及催化性能的影响,并运用N2吸附-脱附(BET)、H2程序升温还原(H2-TPR)、X射线衍射(XRD)等手段对催化剂进行了表征与分析。结果表明,500 焙烧的催化剂BET比表面积及孔容、孔径适中。随着焙烧温度的升高,以尖晶石态存在的铜组分比例逐渐增加,金属Cu的粒径也从12.6 nm增至33.2 nm适当的焙烧温度可保证金属和载体之间的强度适中的作用力,从而保证催化剂具有较优的活性和稳定性。催化剂活性随着焙烧温度的增加先升高后减小,较优的焙烧温度为500

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd