Chemical Industry and Engineering Progress ›› 2017, Vol. 36 ›› Issue (09): 3177-3188.DOI: 10.16085/j.issn.1000-6613.2017-0175
Previous Articles Next Articles
SU Lushu, ZHU Qingqing, LIU Bingchao, LI Chunyi
Received:
2017-02-06
Revised:
2017-03-31
Online:
2017-09-05
Published:
2017-09-05
苏鲁书, 朱晴晴, 刘丙超, 李春义
通讯作者:
李春义,教授,从事石油化工方面的研究工作。
作者简介:
苏鲁书(1991-),男,硕士研究生,从事炼油工艺及流态化方面的研究工作。E-mail:1551069382@qq.com
CLC Number:
SU Lushu, ZHU Qingqing, LIU Bingchao, LI Chunyi. Progress in the study of novel circulating fluidized bed reactors[J]. Chemical Industry and Engineering Progress, 2017, 36(09): 3177-3188.
苏鲁书, 朱晴晴, 刘丙超, 李春义. 新型循环流化床反应器研究进展[J]. 化工进展, 2017, 36(09): 3177-3188.
[1] AHUJA G N,PATWARDHAN A W. CFD and experimental studies of solids hold-up distribution and circulation patterns in gas-solid fluidized beds[J]. Chemical Engineering Journal,2008,143(1/2/3):147-160. [2] WANG Chengxiu,LI Chunyi,ZHU Jesse. A comparison of flow development in high density gas-solids circulating fluidized bed downer and riser reactors[J]. AIChE Journal,2015,61(4):1172-1183. [3] ZHU H,ZHU J. Characterization of fluidization behavior in the bottom region of CFB risers[J]. Chemical Engineering Journal,2008,141(1/2/3):169-179. [4] GUAN G,FUSHIMI C,ISHIZUKA M,et al. Flow behaviors in the downer of a large-scale triple-bed combined circulating fluidized bed system with high solids mass fluxes[J]. Chemical Engineering Science,2011,66(18):4212-4220. [5] ZHOU Q,WANG J. CFD study of mixing and segregation in CFB risers:extension of EMMS drag model to binary gas-solid flow[J]. Chemical Engineering Science,2015,122(122):637-651. [6] DONG W,WANG W,LI J. A multiscale mass transfer model for gas-solid riser flows:Part Ⅰ-Sub-grid model and simple tests[J]. Chemical Engineering Science,2008,63(10):2798-2810. [7] DONG W,WANG W,LI J. A multiscale mass transfer model for gas-solid riser flows:Part Ⅱ-Sub-grid simulation of ozone decomposition[J]. Chemical Engineering Science,2008,63(10):2811-2823. [8] ZHU J,BI H T. Distinctions between low density and high density circulating fluidized beds[J]. The Canadian Journal of Chemical Engineering,1995,73(5):644-649. [9] BI H T,ZHU J X. Static instability analysis of circulating fluidized beds and concept of high-density risers[J]. AIChE Journal,1993, 39(8):1272-1280. [10] LIU Xinhua,CUI Xin,SUN Guang. Buildup of high solids flux conveying flow by coupling a moving bed to the riser bottom[J]. AIChE Journal,2009,55(9):2477-2481. [11] ISSANGYA A S,BAI D,BI H T,et al. Suspension densities in a high-density circulating fluidized bed riser[J]. Chemical Engineering Science,1999,54(22):5451-5460. [12] ISSANGYA A S,GRACE J R,BAI D,et al. Further measurements of flow dynamics in a high-density circulating fluidized bed riser[J]. Powder Technology,2000,111(1-2):104-113. [13] GRACE,ISSANGYA A S,BAI D,et al. Situating the high-density circulating fluidized bed[J]. AIChE Journal,1999,45(10):2108-2116. [14] PARSSINEN J H,ZHU J. Particle velocity and flow development in a long and high-flux circulating fluidized bed riser[J]. Chemical Engineering Science,2001,56(18):5295-5303. [15] PARSSINEN J H,ZHU J. Axial and radial solids distribution in a long and high-flux CFB riser[J]. AIChE Journal,2004,47(10):2197-2205. [16] MANYELE S V,KHAYAT R E,ZHU J. Investigation of the dynamics of a high-flux CFB riser using chaos analysis of pressure fluctuations[J]. Chemical Engineering & Technology,2015,25(8):801-810. [17] WANG X,LIAO L,FAN B,et al. Experimental validation of the gas-solid flow in the CFB riser[J]. Fuel Processing Technology,2010,91(8):927-933. [18] KIM J S,TACHINO R,TSUTSUMI A. Effects of solids feeder and riser exit configuration on establishing high density circulating fluidized beds[J]. Powder Technology,2008,187(1):37-45. [19] 李睿,张少峰,王德武. 出口结构对循环流化床提升管内气固流动的约束影响[J]. 当代化工,2015(8):1888-1893. LI Rui,ZHANG Shaofeng,WANG Dewu. Constraint effect of outlet structure on gas-solid flow behavior in the circulating fluidized-bed riser[J]. Contemporary Chemical Industry,2015(8):1888-1893. [20] DRY R J,CHRISTENSEN I N,WHITE C C. Gas-solids contact efficiency in a high-velocity fluidized bed[J]. Powder Technology, 1987,52(3):243-250. [21] WANG Junwu. Flow structures inside a large-scale turbulent fluidized bed of FCC particles:eulerian simulation with an EMMS-based sub-grid scale model[J]. Particuology,2010,8(2):176-185. [22] ZHU H,ZHU J. Gas-solids flow structures in a novel circulating-turbulent fluidized bed[J]. AIChE Journal,2008,54(5):1213-1223. [23] ZHU J. Circulating turbulent fluidization-a new fluidization regime or just a transitional phenomenon[J]. Particuology,2010,8(6):640-644. [24] ZHU Haiyan,ZHU Jesse. Comparative study of flow structures in a circulating-turbulent fluidized bed[J]. Chemical Engineering Science,2008,63(11):2920-2927. [25] QI Xiaobo,ZHU Haiyan,ZHU Jesse. Demarcation of a new circulating turbulent fluidization regime[J]. AIChE Journal,2009,55(3):594-611. [26] QI Maozhan,BARGHI S,ZHU J. Detailed hydrodynamics of high flux gas-solid flow in a circulating turbulent fluidized bed[J]. Chemical Engineering Journal,2012,209(41):633-644. [27] 戴厚良. 把握发展新趋势实现我国石油化工产业的转型发展[J]. 当代石油石化,2015,23(8):1-3. DAI Houliang. Grasping the new trends of the development,realizing the transformational development of china's petrochemical industry[J]. Petroleum & Petrochemical Today,2015,23(8):1-3. [28] 白雪松, 郑治. 重油催化增产低碳烯烃技术进展综述[J]. 化学工业,2013,31(6):19-23. BAI Xuesong,ZHENG Zhi. The review of the production of low carbon olefins technology progress from heavy oil catalytic[J]. Chemical Industry,2013,31(6):19-23. [29] 王梦瑶, 周嘉文, 任天华, 等. 催化裂化多产丙烯[J]. 化工进展,2015, 34(6):1619-1624. WANG Mengyao,ZHOU Jiawen,REN Tianhua,et al. Catalytic cracking processes for maximizing propylene production[J]. Chemical Industry and Engineering Progress,2015,34(6):1619-1624. [30] DING H,LI W,ZHANG H,et al. The application of MIP technology for enhancing propylene yield on an ARGG unit[J]. Petroleum Processing & Petrochemicals,2011,42(10):9-12. [31] HAN W,HUANG R,GONG J. Commercial application of new FCC process-MIP-CGP[J]. Petroleum Refinery Engineering,2006,36(9):1-4. [32] 张津林,李静. 炼油企业增产丙烯技术探析[J]. 石油与天然气化工,2008,37(3):193-195. ZHANG Jinlin,LI Jing. Study on the technologies to increase propylene output for refinery[J]. Chemical Engineering of Oil and Gas,2008,37(3):193-195. [33] LI C,YANG C,SHAN H. Maximizing propylene yield by two-stage riser catalytic cracking of heavy oil[J]. Industrial & Engineering Chemistry Research,2007,46(14):4914-4920. [34] BU J,ZUH J X. Influence of ring-type internals on axial pressure distribution in circulating fluidized bed[J]. Canadian Journal of Chemical Engineering,2009,77(1):26-34. [35] YANG C,SHAN H,ZHANG J. Two-stage riser FCC technologies. Petroleum Refinery Engineering,2005,35(3):28-33. [36] 王定博,刘小波,郭敬杭,等. 碳四烯烃催化裂解制丙烯和乙烯[J]. 石油化工,2010,39(5):482-486. WANG Dingbo,LIU Xiaobo,GUO Dinghang,et al. Catalytic cracking of C4 alkenes to propylene and ethylene[J]. Petrochemical Technology,2010,39(5):482-486. [37] 刘清华,杨朝合,赵辉,等. 变径提升管内颗粒流动特性的研究[J]. 石油化工,2009,38(1):40-45. LIU Qinghua,YANG Chaohe,ZHAO Hui,et al. Solid flow pattern in changing-diameter riser of a circulating fluidized bed[J]. Petrochemical Technology,2009,38(1):40-45. [38] 李春义,杨朝合,胡永庆,等. 一种重油和轻烯烃组合进料制备丙烯的反应器及方法:CN201010166878.4[P]. 2010-09-22. LI Chunyi,YANG Chaohe,HU Yongqing,et al. A kind of reactor to maximum propylene by the combination of a heavy oil and light olefin feed:CN201010166878.4[P]. 2010-09-22. [39] CUI Gang,LIU Mengxi,LU Chunxi. Axial distribution and development of solids hold-up in a fluidized bed-riser coupled reactor[J]. The Chinese Journal of Process Engineering,2014,14(4):556-561. [40] 周发戚,陈勇,魏志刚,等. 循环流化床提升管T形弯头动态压力的小波分析[J]. 化工学报,2015,66(5):1697-1703. ZHOU Faqi,CHEN Yong,WEI Zhigang,et al. Wavelet analysis of dynamic pressure in T-abrupt of CFB riser[J]. CIESC Journal,2015,66(5):1697-1703. [41] HARTRE E U,RATSCHOW L,WISCHNEWSKI R,et al. CFD-simulation of a circulating fluidized bed riser[J]. Particuology,2009,7(4):283-296. [42] GAN J,ZHAO H,BERROUK A S,et al. Numerical simulation of hydrodynamics and cracking reactions in the feed mixing zone of a multi regime gas-solid riser reactor[J]. Industrial & Engineering Chemistry Research,2011,50(20):11511-11520. [43] 李春义,徐占武,姜国骅,等. 两段提升管催化裂解多产丙烯技术的工业试验[J]. 石化技术与应用,2008,21(5):436-441. LI Chunyi,XU Zhanwu,JIANG Guohua,et al. Commercial test of two-stage riser catalytic cracking of heavy oil for maximizing propylene yield[J]. Petrochemical Technology & Application,2008,21(5):436-441. [44] GAN J,YANG C,LI C,et al. Gas-solid flow patterns in a novel multi-regime riser[J]. Chemical Engineering Journal,2011,178(24):297-305. [45] HAN Chaoyi,CHEN Xiaocheng,WU Wenlong,et al. Effect of internals on characteristics of gas-solids flow in a variable diameter riser reactor[J]. Petroleum Processing and Petrochemicals,2016,47(1):5-10. [46] SHI Xiaogang,LAN Xingying,LIU Feng,et al. Effect of particle size distribution on hydrodynamics and solids back-mixing in CFB risers using CPFD simulation[J]. Powder Technology,2014,266(266):135-143. [47] 张涛. 内循环流化床反应器流动传质特性的计算流体力学模拟研究[D]. 广州:华南理工大学,2012. ZHANG Tao. Simulation of mass transfer and hydrodynamic characteristics in internal loop fluidized bed reactor by computational fluid dynamics method[D]. Guangzhou:South China University of Technology,2012. [48] 严超宇,卢春喜. 气固环流燃烧器内颗粒流动行为[J]. 化工学报, 2010, 61(6):1357-1366. YAN Chaoyu,LU Chunxi. Fluidization behavior in gas-solid airlift loop combustor[J]. CIESC Journal,2010,61(6):1357-1366. [49] YAN C,LU C,ZHANG Y,et al. Profiles of solid fraction and heterogeneous phase structure in a gas-solid airlift loop reactor[J]. Chemical Engineering Science,2010,65(9):2707-2726. [50] SHEN Zhiyuan,YANG Lijun,LIU Mengxi,et al. Experimental study on bed density distribution in a novel draft tube-lifted gas-solid air loop reactor[J]. China Powder Science and Technology,2012,18(1):66-71. [51] 王德武,卢春喜,严超宇. 提升管与气-固环流床层耦合反应器的流体力学特性及流动模型[J]. 化工学报,2010,61(9):2235-2242. WANG Dewu,LU Chunxi,YAN Chaoyu. Hydrodynamic behavior and flow model in coupled reactor with riser and gas-solid loop fluidized bed[J]. CIESC Journal,2010,61(9):2235-2242. [52] 孟振亮,刘梦溪,李飞,等. 新型气固环流反应器内颗粒流动的CFD模拟[J]. 化工学报,2016,67(8):3234-3243. MENG Zhenliang,LIU Mengxi,LI Fei,et al. CFD simulation of particle flow in new type of gas-solid air loop reactor[J]. CIESC Journal,2016,67(8):3234-3243. [53] GENG Q,ZHU X,LIU Y,et al. Gas-solid flow behavior and contact efficiency in a circulating-turbulent fluidized bed[J]. Powder Technology,2013,245(8):134-145. [54] ZHU X,LI C,YANG C,et al. Gas-solids flow structure and prediction of solids concentration distribution inside a novel multi-regime riser[J]. Chemical Engineering Journal,2013,232(9):290-301. [55] ZHU X,YANG C,LI C,et al. Comparative study of gas-solids flow patterns inside novel multi-regime riser and conventional riser[J]. Chemical Engineering Journal,2013,215(2):188-201. [56] WANG Chengxiu,ZHU Jesse. Developments in the understanding of gas-solid contact efficiency in the circulating fluidized bed riser reactor:A review[J]. Chinese Journal of Chemical Engineering,2016,24(1):53-62. [57] 尤廷正. 甲醇选择性制丙烯和清洁汽油工艺技术研究[D]. 青岛:中国石油大学(华东),2014. YOU Tingzheng. Studies on the technology for selective conversion of methanol to propene and clean gasoline[D]. Qingdao:China University of Petroleum (East China),2014. |
[1] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[2] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[3] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[4] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[5] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[6] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[7] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[8] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[9] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[10] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[11] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[12] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[13] | LI Dong, WANG Qianqian, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of series stack of non-aqueous nano slurry thermally regenerative flow batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4238-4246. |
[14] | LU Shaojie, LIU Jia, JI Qianzhu, LI Ping, HAN Yueyang, TAO Min, LIANG Wenjun. Preparation of diatomaceous earth-based composite filler and its xylene removal performance by a biotrickling filter [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3884-3892. |
[15] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 858
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 455
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |