Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 2133-2140.DOI: 10.16085/j.issn.1000-6613.2024-0592
• Materials science and technology • Previous Articles Next Articles
SUN Mingkai1(
), CHEN Wenjing1, LI Mingcong1, CHEN Ying2, JIANG Shujun3, LU Guibin3, ZHOU Rong1(
)
Received:2024-04-09
Revised:2024-06-12
Online:2025-05-07
Published:2025-04-25
Contact:
ZHOU Rong
孙明楷1(
), 陈文静1, 李明聪1, 陈影2, 蒋树军3, 鹿贵滨3, 周蓉1(
)
通讯作者:
周蓉
作者简介:孙明楷(2001—),男,硕士研究生,研究方向为纤维过滤材料。E-mail:Smk522542424@163.com。
基金资助:CLC Number:
SUN Mingkai, CHEN Wenjing, LI Mingcong, CHEN Ying, JIANG Shujun, LU Guibin, ZHOU Rong. Advances in fiber analysis and testing of high-temperature composite filter material[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2133-2140.
孙明楷, 陈文静, 李明聪, 陈影, 蒋树军, 鹿贵滨, 周蓉. 高温复合滤料的纤维分析检测研究进展[J]. 化工进展, 2025, 44(4): 2133-2140.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0592
| 纤维种类 | 燃烧状态 | 燃烧气味 | 残留物特征 | ||
|---|---|---|---|---|---|
| 靠近火焰时 | 接触火焰时 | 离开火焰时 | |||
| PTFE | 熔缩 | 熔融燃烧 | 自灭 | 石蜡味 | 呈白色胶状伴有少量黑色粉末 |
| PI | 不熔不缩 | 燃烧、发红光 | 自灭 | 辛辣味 | 呈黑色灰烬 |
| PPS | 熔缩 | 熔融燃烧冒黑烟 | 自灭 | 烧硫黄气味 | 呈不规则硬且脆黑色块状 |
| PSA | 不熔不缩 | 熔融燃烧 | 自灭 | 浆糊气味 | 呈黑色焦炭状 |
| PMIA | 不熔不缩 | 燃烧冒黑烟 | 自灭 | 特异气味 | 呈黑色絮状 |
| 玻璃纤维 | 不熔不缩 | 熔融发红光 | 自灭 | 无味 | 呈白色硬珠状 |
| BF | 不熔不缩 | 发红光、冒白烟 | 自灭 | 无味 | 呈黑褐色且硬脆易断 |
| 陶瓷纤维 | 不熔不缩 | 橙黄色火焰 | 无明显现象 | 无味 | 呈浅黑色 |
| 纤维种类 | 燃烧状态 | 燃烧气味 | 残留物特征 | ||
|---|---|---|---|---|---|
| 靠近火焰时 | 接触火焰时 | 离开火焰时 | |||
| PTFE | 熔缩 | 熔融燃烧 | 自灭 | 石蜡味 | 呈白色胶状伴有少量黑色粉末 |
| PI | 不熔不缩 | 燃烧、发红光 | 自灭 | 辛辣味 | 呈黑色灰烬 |
| PPS | 熔缩 | 熔融燃烧冒黑烟 | 自灭 | 烧硫黄气味 | 呈不规则硬且脆黑色块状 |
| PSA | 不熔不缩 | 熔融燃烧 | 自灭 | 浆糊气味 | 呈黑色焦炭状 |
| PMIA | 不熔不缩 | 燃烧冒黑烟 | 自灭 | 特异气味 | 呈黑色絮状 |
| 玻璃纤维 | 不熔不缩 | 熔融发红光 | 自灭 | 无味 | 呈白色硬珠状 |
| BF | 不熔不缩 | 发红光、冒白烟 | 自灭 | 无味 | 呈黑褐色且硬脆易断 |
| 陶瓷纤维 | 不熔不缩 | 橙黄色火焰 | 无明显现象 | 无味 | 呈浅黑色 |
| 纤维种类 | 热性能 |
|---|---|
| PTFE | Td约为425℃ |
| PI | Tg>280℃,杂环PI的Tg可超过450℃,Td约为560℃ |
| PPS | Td>400℃,熔点为284℃ |
| PSA | Td约为422℃ |
| PMIA | Td为400~430℃ |
| 玻璃纤维 | 工作常用温度280℃ |
| BF | 最高工作温度650℃ |
| 陶瓷纤维 | 工作温度800~1500℃ |
| 纤维种类 | 热性能 |
|---|---|
| PTFE | Td约为425℃ |
| PI | Tg>280℃,杂环PI的Tg可超过450℃,Td约为560℃ |
| PPS | Td>400℃,熔点为284℃ |
| PSA | Td约为422℃ |
| PMIA | Td为400~430℃ |
| 玻璃纤维 | 工作常用温度280℃ |
| BF | 最高工作温度650℃ |
| 陶瓷纤维 | 工作温度800~1500℃ |
| 纤维种类 | 颜色变化 |
|---|---|
| PTFE | 色彩丰富,+45°时浅蓝黄粉色条纹,-45°时黄、粉、蓝色条纹变化 |
| PPS | +45°时边缘开始呈泛粉红,绿色泛粉红色;-45°时边缘开始呈泛绿、黄、绿色变化 |
| PMIA | +45°时边缘开始呈浅粉红浅灰蓝,到-45°时边缘开始呈灰色白线条浅变化 |
| PI | +45°时边缘开始呈粉色灰蓝色,到-45°时边缘开始呈黄、绿、黄色变化 |
| 玻璃纤维 | 颜色透亮且无变化 |
| 纤维种类 | 颜色变化 |
|---|---|
| PTFE | 色彩丰富,+45°时浅蓝黄粉色条纹,-45°时黄、粉、蓝色条纹变化 |
| PPS | +45°时边缘开始呈泛粉红,绿色泛粉红色;-45°时边缘开始呈泛绿、黄、绿色变化 |
| PMIA | +45°时边缘开始呈浅粉红浅灰蓝,到-45°时边缘开始呈灰色白线条浅变化 |
| PI | +45°时边缘开始呈粉色灰蓝色,到-45°时边缘开始呈黄、绿、黄色变化 |
| 玻璃纤维 | 颜色透亮且无变化 |
| 1 | LIU Xianghong. Low-carbon utilization of coal gangue under the carbon neutralization strategy: A short review[J]. Journal of Material Cycles and Waste Management, 2023, 25(4): 1978-1987. |
| 2 | LI Jiayan, WANG Jinman. Comprehensive utilization and environmental risks of coal gangue: A review[J]. Journal of Cleaner Production, 2019, 239: 117946. |
| 3 | 钱幺, 郑宇婷, 梁紫茵, 等. 高效空气过滤材料的研究现状及发展趋势[J]. 纺织科技进展, 2023(1): 16-20. |
| QIAN Yao, ZHENG Yuting, LIANG Ziyin, et al. Research status and development trend of high efficiency air filtration materials[J]. Progress in Textile Science & Technology, 2023(1): 16-20. | |
| 4 | 杨振生, 潘浩男, 李春利, 等. 高性能聚苯硫醚过滤材料研究进展[J]. 化工新型材料, 2019, 47(10): 216-218, 223. |
| YANG Zhensheng, PAN Haonan, LI Chunli, et al. Progress of PPS filtration material with high performance[J]. New Chemical Materials, 2019, 47(10): 216-218, 223. | |
| 5 | 耿焕, 乐雨晨, 王常明, 等. 聚四氟乙烯的成型加工技术及国内外研究进展[J]. 有机氟工业, 2023(2): 41-48. |
| GENG Huan, YUE Yuchen, WANG Changming, et al. Forming technology and research progress of polytetrafluoroethylene at home and abroad[J]. Organo-Fluorine Industry, 2023(2): 41-48. | |
| 6 | 代艳红, 王瑞柳, 徐广标, 等. 聚四氟乙烯热轧纤维膜的结构与性能[J]. 东华大学学报(自然科学版), 2019, 45(3): 358-363. |
| DAI Yanhong, WANG Ruiliu, XU Guangbiao, et al. Structure and properties of PTFE fiber membrane prepared by hot-rolling process[J]. Journal of Donghua University (Natural Science), 2019, 45(3): 358-363. | |
| 7 | 顾榴俊. 聚四氟乙烯及其应用研究进展[J]. 浙江化工, 2020, 51(3): 1-5. |
| GU Liujun. Research progress of polytetrafluoroethylene and its application[J]. Zhejiang Chemical Industry, 2020, 51(3): 1-5. | |
| 8 | 卢俊典. 聚酰亚胺纤维发展分析[J]. 化学工业, 2020, 38(3): 34-36. |
| LU Jundian. Analysis of polyimide fiber development[J]. Chemical Industry, 2020, 38(3): 34-36. | |
| 9 | 申莹, 李大伟, 刘庆生, 等. 聚酰亚胺纳米纤维的制备及性能表征[J]. 高分子材料科学与工程, 2020, 36(1): 44-49. |
| SHEN Ying, LI Dawei, LIU Qingsheng, et al. Preparation and properties of polyimide nanofibers[J]. Polymer Materials Science and Engineering, 2020, 36(1): 44-49. | |
| 10 | 洪杰, 刘梅城, 龚蕴玉, 等. 聚酰亚胺纤维及其织物保暖性能研究[J]. 棉纺织技术, 2020, 48(1): 18-22. |
| HONG Jie, LIU Meicheng, GONG Yunyu, et al. Study on warmth retention property of polyimide fiber and its fabric[J]. Cotton Textile Technology, 2020, 48(1): 18-22. | |
| 11 | 李小东, 陈智, 巨婷婷. 聚苯硫醚的合成及其应用研究进展[J]. 广州化工, 2019, 47(19): 17-18, 21. |
| LI Xiaodong, CHEN Zhi, JU Tingting. Research progress on synthesis and application of polyphenylene sulfide[J]. Guangzhou Chemical Industry, 2019, 47(19): 17-18, 21. | |
| 12 | 邹振高, 周长年, 王汴文. 芳砜纶的技术现状及应用进展[J]. 纺织导报, 2018(8): 51-52, 54. |
| ZOU Zhengao, ZHOU Changnian, WANG Bianwen. Technology and application status-quo of polysulfonamide fiber[J]. China Textile Leader, 2018(8): 51-52, 54. | |
| 13 | 郑帼, 强永勤, 张晓慧, 等. 芳砜纶耐高温过滤织物的性能研究[J]. 现代化工, 2019, 39(2): 117-120. |
| ZHENG Guo, QIANG Yongqin, ZHANG Xiaohui, et al. Study on properties of polysulfonamide-based high temperature-resistant filtration fabrics[J]. Modern Chemical Industry, 2019, 39(2): 117-120. | |
| 14 | 井沁沁, 沈兰萍. 芳砜纶纺纱研究进展及其应用[J]. 纺织科学与工程学报, 2018, 35(4): 142-147. |
| JING Qinqin, SHEN Lanping. Progress and applications of arylsulfone spinning[J]. Journal of Textile Science and Engineering, 2018, 35(4): 142-147. | |
| 15 | 张玮, 刘姝瑞, 张明宇, 等. 芳纶纤维的发展现状及应用[J]. 纺织科学与工程学报, 2024, 41(1): 86-94. |
| ZHANG Wei, LIU Shurui, ZHANG Mingyu, et al. Development status and application of aramid fiber[J]. Journal of Textile Science and Engineering, 2024, 41(1): 86-94. | |
| 16 | 沈逍安, 王晓映, 夏光美, 等. 芳纶的发展现状及其表面改性研究进展[J]. 合成纤维, 2021, 50(1): 20-25. |
| SHEN Xiaoan, WANG Xiaoying, XIA Guangmei, et al. The development situation of aramid fiber and its surface modification research progress[J]. Synthetic Fiber in China, 2021, 50(1): 20-25. | |
| 17 | 钱幺, 郑宇婷, 赵宝宝, 等. 超细无碱玻纤过滤材料的电晕驻极性能[J]. 纺织科技进展, 2023(3): 18-21. |
| QIAN Yao, ZHENG Yuting, ZHAO Baobao, et al. Corona charging performance of superfine E-glass filter[J]. Progress in Textile Science and Technology, 2023(3): 18-21. | |
| 18 | 于宾, 黄海涛, 石文英, 等. 耐高温纤维空气过滤材料的研究进展[J]. 化工新型材料, 2021, 49(8): 1-5. |
| YU Bin, HUANG Haitao, SHI Wenying, et al. Progress on fiber air filtration material with high temperature resistant[J]. New Chemical Materials, 2021, 49(8): 1-5. | |
| 19 | 张小鹏, 钱晓明, 刘璐, 等. 玻璃纤维过滤材料的研究现状[J]. 化工新型材料, 2021, 49(7) : 225-228. |
| ZHANG Xiaopeng, QIAN Xiaoming, LIU Lu, et al. Research status of glass fiber filtration material[J]. New Chemical Materials, 2021, 49(7): 225-228. | |
| 20 | 戴旭鹏, 王平, 费传军, 等. 玻璃微纤维的性能及其在空气过滤行业的应用[J]. 玻璃纤维, 2019(1): 37-39, 45. |
| DAI Xupeng, WANG Ping, FEI Chuanjun, et al. The properties of glass microfibers and their applications in air filtration industry[J]. Fiber Glass, 2019(1): 37-39, 45. | |
| 21 | 祖文菊, 杨建忠, 熊海鹰, 等. 温度对玄武岩等高性能纤维压缩弯曲性能的影响[J]. 合成纤维, 2023, 52(8): 35-39, 56. |
| ZU Wenju, YANG Jianzhong, XIONG Haiying, et al. Effect of temperature on compression and bending properties of high performance fibers such as basalt fiber[J]. Synthetic Fiber in China, 2023, 52(8): 35-39, 56. | |
| 22 | 张玮, 谭艳君, 刘姝瑞, 等. 玄武岩纤维的性能及应用[J]. 纺织科学与工程学报, 2022, 39(1): 85-89. |
| ZHANG Wei, TAN Yanjun, LIU Shurui, et al. Properties and applications of basalt fiber[J]. Journal of Textile Science and Engineering, 2022, 39(1): 85-89. | |
| 23 | 李年华, 刘元坤, 崔正浩, 等. 玄武岩纤维的性能及其应用[J]. 合成纤维, 2022, 51(12): 16-23. |
| LI Nianhua, LIU Yuankun, CUI Zhenghao, et al. Study on properties and application of basalt fiber[J]. Synthetic Fiber in China, 2022, 51(12): 16-23. | |
| 24 | 倪诗莹, 公衍民, 邹栋, 等. 高温气体除尘陶瓷纤维膜的研究进展[J]. 膜科学与技术, 2023, 43(5): 168-178. |
| NI Shiying, GONG Yanmin, ZOU Dong, et al. Research progress of ceramic fiber membrane for high-temperature gas dust removal[J]. Membrane Science and Technology, 2023, 43(5): 168-178. | |
| 25 | 薛友祥, 李福功, 唐钰栋, 等. 高温陶瓷纤维过滤材料[J]. 现代技术陶瓷, 2020, 41(5): 281-293. |
| XUE Youxiang, LI Fugong, TANG Yudong, et al. Development of high temperature ceramic fiber filtration materials[J]. Advanced Ceramics, 2020, 41(5): 281-293. | |
| 26 | 唐钰栋, 程之强, 薛友祥, 等. 高温气体净化用陶瓷纤维过滤材料的制备及性能[J]. 现代技术陶瓷, 2020, 41(5): 303-311. |
| TANG Yudong, CHENG Zhiqiang, XUE Youxiang, et al. Preparation and performance of ceramic fiber filtration material for high temperature gas purification[J]. Advanced Ceramics, 2020, 41(5): 303-311. | |
| 27 | 梁振江, 邓辉, 张杰, 等. 陶瓷纤维在高温烟气过滤中的应用[J]. 山东纺织科技, 2017, 58(6): 44-46. |
| LIANG Zhenjiang, DENG Hui, ZHANG Jie, et al. The application of ceramic fiber in high temperature flue gas filtration[J]. Shandong Textile Science & Technology, 2017, 58(6): 44-46. | |
| 28 | 朱庆芳, 罗文婷. 低熔点聚酯/聚酯复合纤维与聚丙烯腈纤维混合物定量分析方法[J]. 中国纤检, 2023(9): 65-67. |
| ZHU Qingfang, LUO Wenting. Quantitative analysis method of low melting point polyester/polyester composite fiber and polyacrylonitrile fiber mixture[J]. China Fiber Inspection, 2023(9): 65-67. | |
| 29 | 李昱芃, 邵萌, 肖宏晓, 等. 芳纶纤维的定性定量方法探讨[J]. 中国纤检, 2019(1): 77-79. |
| LI Yupeng, SHAO Meng, XIAO Hongxiao, et al. A discussion on qualitative and quantitative methods of aramid fiber[J]. China Fiber Inspection, 2019(1): 77-79. | |
| 30 | 刘贵, 李玲, 赖祥辉. 聚芳砜酰胺纤维的定性鉴别方法研究[J]. 福建轻纺, 2017(12): 33-36. |
| LIU Gui, LI Ling, LAI Xianghui. Study on qualitative identification method of polyarylsulfone amide fiber[J]. The Light & Textile Industries of Fujian, 2017(12): 33-36. | |
| 31 | 黄海刚, 王彩云, 施点望. 聚四氟乙烯纤维的定性鉴别研究[J]. 中国纤检, 2014(17): 78-81. |
| HUANG Haigang, WANG Caiyun, SHI Dianwang. Study on the qualitative identification for PTFE fiber[J]. China Fiber Inspection, 2014(17): 78-81. | |
| 32 | 徐燕, 金玉霞, 丁敏俊. 高温过滤材料定性鉴别方法分析[J]. 纺织检测与标准, 2021, 7(5): 14-19. |
| XU Yan, JIN Yuxia, DING Minjun. Analysis on the qualitative identification methods of high temperature filtration materials[J]. Textile Testing and Standard, 2021, 7(5): 14-19. | |
| 33 | 郭光振, 刘贵, 刘龙辉, 等. 氧化铝纤维鉴别试验方法研究[J]. 福建轻纺, 2023(5): 4-7, 22. |
| GUO Guangzhen, LIU Gui, LIU Longhui, et al. Study on identification test method of alumina fiber[J]. The Light & Textile Industries of Fujian, 2023(5): 4-7, 22. | |
| 34 | 中华人民共和国国家发展和改革委员会. 纺织纤维鉴别试验方法 第4部分:溶解法: [S]. 北京: 中国标准出版社, 2007. |
| National Development and Reform Commission of the People’s Republic of China. Test method for identification of textile fibers—Part 4: Solubility: [S]. Beijing: Standards Press of China, 2007. | |
| 35 | 赵向旭. 聚酰亚胺纤维定性定量分析方法研究[D]. 上海: 东华大学, 2016. |
| ZHAO Xiangxu. Researches on the characterization and quantitative analysis methods for polyimide fiber[D]. Shanghai: Donghua University, 2016. | |
| 36 | 来燕芳. 陶瓷纤维、玄武岩纤维、聚苯硫醚纤维及聚醚醚酮纤维的分析鉴别方法的研究[D]. 上海: 东华大学, 2014. |
| LAI Yanfang. Study on qualitative identification method for ceramic, basalt, polyphenylene sulfide and poly(ether-ether-ketone) fiber[D]. Shanghai: Donghua University, 2014. | |
| 37 | 刘政杰, 来燕芳, 张天骄. 两种无机纤维的分析鉴别方法[J]. 产业用纺织品, 2013, 31(2): 44-47. |
| LIU Zhengjie, LAI Yanfang, ZHANG Tianjiao. Methods to identify two kinds of inorganic fibers[J]. Technical Textiles, 2013, 31(2): 44-47. | |
| 38 | 中华人民共和国国家发展和改革委员会. 纺织纤维鉴别试验方法 第2部分: 燃烧法: [S]. 北京: 中国标准出版社, 2007. |
| National Development and Reform Commission of the People’s Republic of China. Test method for identification of textile fibers—Part 2: Burning behavior: [S]. Beijing: Standards Press of China, 2007. | |
| 39 | 国家市场监督管理总局, 国家标准化管理委员会. 化学纤维 热分解温度试验方法: [S]. 北京: 中国标准出版社, 2019. |
| State Administration for Market Regulation, Standardization Administration of the People’s Republic China. Man-made fiber—Test method for thermal decomposition temperature: [S]. Beijing: Standards Press of China, 2019. | |
| 40 | 徐毓亚, 闵庭元. 过滤材料纤维含量定量分析方法的探究[J]. 中国纤检, 2016(11): 90-93. |
| XU Yuya, MIN Tingyuan. Study on fiber quantitative analysis method of filter material[J]. China Fiber Inspection, 2016(11): 90-93. | |
| 41 | 中华人民共和国工业和信息化部. 纺织品 聚苯硫醚纤维与聚四氟乙烯纤维混合物定量分析 差示扫描量热法(DSC): [S]. 北京: 中国标准出版社, 2022. |
| Ministry of Industry and Information Technology of the People’s Republic of China. Textiles—Quantitative analysis of polyphenylene sulfide fiber and polytetrafluoroethylene fiber mixture—Differential scanning calorimetry (DSC): [S]. Beijing: Standards Press of China, 2022. | |
| 42 | 国家市场监督管理总局, 中国国家标准化管理委员会. 塑料 差示扫描量热法(DSC) 第3部分: 熔融和结晶温度及热焓的测定: [S]. 北京: 中国标准出版社, 2004. |
| State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Plastics—Differential scanning calorimetry (DSC)—Part 3: Determination of temperature and enthalpy of melting and crystallization: [S]. Beijing: Standards Press of China, 2004. | |
| 43 | 王颖, 张静静, 金小培, 等. PPS/PTFE滤料的DSC定量分析方法研究[J]. 纺织科学研究, 2017, 28(10): 80-82. |
| WANG Ying, ZHANG Jingjing, JIN Xiaopei, et al. Study on DSC quantitative analysis method of PPS/PTFE filter material[J]. Textile Science Research, 2017, 28(10): 80-82. | |
| 44 | 郑少明. DSC定量分析聚乙烯纤维与其他纤维混纺织物方法的研究[J]. 中国纤检, 2020(7): 47-49. |
| ZHENG Shaoming. The quantitative analysis of polyethylene and other fiber blend fabric with by DSC[J]. China Fiber Inspection, 2020(7): 47-49. | |
| 45 | 李玲, 张清山. DSC法测定ES纤维复合比的研究[J]. 中国纤检, 2020(10): 66-68. |
| LI Ling, ZHANG Qingshan. Research on composite ratio of ES fibers by DSC analysis[J]. China Fiber Inspection, 2020(10): 66-68. | |
| 46 | 高玉斌, 彭光志, 曹巧凤. 偏振光显微镜技术对高温滤料的快速鉴别方法研究[J]. 中国纤检, 2023(5): 69-71. |
| GAO Yubin, PENG Guangzhi, CAO Qiaofeng. Study on rapid identification method of high temperature filter media by polarization microscope technology[J]. China Fiber Inspection, 2023(5): 69-71. | |
| 47 | 丘文彬. 仪器分析法鉴别聚乙烯、聚丙烯、聚四氟乙烯纤维[J]. 产业用纺织品, 2023, 41(11): 46-50. |
| QIU Wenbin. Identification of polyethylene, polypropylene and polytetrafluoroethylene fibers by instrumental analysis [J] . Technical Textiles, 2023, 41(11): 46-50. | |
| 48 | 章斐. 利用热重红外联用技术快速鉴别单组分纺织纤维[J]. 纺织导报, 2023(4): 89-94. |
| ZHANG Fei. Rapid identification of fibers by TG/FTIR method[J]. China Textile Leader, 2023(4): 89-94. |
| [1] | LIU Xiaobei, ZHANG Xihua, XIONG Mei, ZHAO He. Analysis on the characteristic organic pollutants from discharge wastewater of spent lithium batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5619-5629. |
| [2] | Jianhua CAO,Lingqin LIU,Yaji HUANG,Shengnian TAO,Wenhui QIN,Haibin REN. Effects of feedstock type and pyrolysis temperature on Cd2+ adsorption by biochar [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4183-4190. |
| [3] | Wenying LI, Hai MU, Wei WANG, Cuiping YE, Jie FENG. Status quo and outlook of qualitative and quantitative analysis of light weight fractions of coal-based crude oil [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 217-228. |
| [4] | ZHOU Guangwen, YANG Xia, ZHENG Shiqing. Research progress of intelligent HAZOP analysis system [J]. Chemical Industry and Engineering Progress, 2018, 37(03): 815-821. |
| [5] | HU Jigeng. Advance in production and analysis of α-hydroxyacetic acid [J]. Chemical Industry and Engineering Progree, 2007, 26(4): 496-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |