1 |
WEI Shuxin, LI Zhao, LU Wei, et al. Multicolor fluorescent polymeric hydrogels[J]. Angewandte Chemie International Edition, 2021, 60(16): 8608-8624.
|
2 |
SU Weiwei, WANG Ran, QIAN Cheng, et al. Research progress review of preparation and applications of fluorescent hydrogels[J]. Journal of Chemistry, 2020, 2020: 8246429.
|
3 |
LI Ping, ZHANG Dong, ZHANG Yuchong, et al. Aggregation-caused quenching-type naphthalimide fluorophores grafted and ionized in a 3D polymeric hydrogel network for highly fluorescent and locally tunable emission[J]. ACS Macro Letters, 2019, 8(8): 937-942.
|
4 |
LI Zhenghao, XU Wenlong, WANG Xinhao, et al. Fabrication of PVA/PAAm IPN hydrogel with high adhesion and enhanced mechanical properties for body sensors and antibacterial activity[J]. European Polymer Journal, 2021, 146: 110253.
|
5 |
元野. 含吡啶环酰腙结构的席夫碱类智能荧光水凝胶的制备与性能[D]. 广州: 华南理工大学, 2021.
|
|
YUAN Ye. Preparation and properties of schiff base intelligent fluorescent hydrogels containing acylhydrazone structure and pyridine ring[D]. Guangzhou: South China University of Technology, 2021.
|
6 |
王贝贝. 基于螺吡喃的智能荧光水凝胶的制备和性能研究[D]. 武汉: 武汉大学, 2019.
|
|
WANG Beibei. Preparation and properties of spiropyran-based intelligent fluorescent hydrogel[D]. Wuhan: Wuhan University, 2019.
|
7 |
PARK Hye-In, PARK Soo-Young. Smart fluorescent hydrogel glucose biosensing microdroplets with dual-mode fluorescence quenching and size reduction[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30172-30179.
|
8 |
TIAN Yongchang, PANG Long, ZHANG Rong, et al. Poly-tetrahydropyrimidine antibacterial hydrogel with injectability and self-healing ability for curing the purulent subcutaneous infection[J]. ACS Applied Materials & Interfaces, 2020, 12(45): 50236-50247.
|
9 |
ZHANG Kaiyue, WU Di, CHANG Limin, et al. Cellulose based self-healing hydrogel through boronic ester connections for wound healing and antitumor applications[J]. International Journal of Biological Macromolecules, 2023, 230: 123294.
|
10 |
EL-HUSSEINY Hussein M, MADY Eman A, HAMABE Lina, et al. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications[J]. Materials Today Bio, 2021, 13: 100186.
|
11 |
MO Jiaying, DAI Yuhang, ZHANG Chao, et al. Design of ultra-stretchable, highly adhesive and self-healable hydrogels via tannic acid-enabled dynamic interactions[J]. Materials Horizons, 2021, 8(12): 3409-3416.
|
12 |
WANG Nan, MA Jie, SONG Wenxia, et al. An injectable hydrogel to disrupt neutrophil extracellular traps for treating rheumatoid arthritis[J]. Drug Delivery, 2023, 30(1): 2173332.
|
13 |
LIU Wei, ZHAO Nana, YIN Qi, et al. Injectable hydrogels encapsulating dual-functional Au@Pt core-shell nanoparticles regulate infarcted microenvironments and enhance the therapeutic efficacy of stem cells through antioxidant and electrical integration[J]. ACS Nano, 2023, 17(3): 2053-2066.
|
14 |
JING Xirui, XU Chao, SU Weijie, et al. Photosensitive and conductive hydrogel induced innerved bone regeneration for infected bone defect repair[J]. Advanced Healthcare Materials, 2023, 12(3): e2201349.
|
15 |
MADHU Chilakapati, ROY Bappaditya, MAKAM Pandeeswar, et al. Bicomponent β-sheet assembly of dipeptide fluorophores of opposite polarity and sensitive detection of nitro-explosives[J]. Chemical Communications, 2018, 54(18): 2280-2283.
|
16 |
XU Suying, SEDGWICK Adam C, ELFEKY Souad A, et al. A boronic acid-based fluorescent hydrogel for monosaccharide detection[J]. Frontiers of Chemical Science and Engineering, 2020, 14(1): 112-116.
|
17 |
SUI Bowen, ZHANG Yuping, HUANG Lei, et al. Fluorescent nanofibrillar hydrogels of carbon dots and cellulose nanocrystals and their biocompatibility[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(50): 18492-18499.
|
18 |
ZUO Xiaoling, WANG Shaofan, ZHOU Ying, et al. Fluorescent hydrogel actuators with simultaneous morphing- and color/brightness-changes enabled by light-activated 3D printing[J]. Chemical Engineering Journal, 2022, 447: 137492.
|
19 |
WANG Yu, PENG Yuan, LI Shuang, et al. The development of a fluorescence/colorimetric biosensor based on the cleavage activity of CRISPR-Cas12a for the detection of non-nucleic acid targets[J]. Journal of Hazardous Materials, 2023,449: 131044.
|
20 |
ZHENG Hanjia, GHAVAMINEJAD Amin, GHAVAMINEJAD Peyman, et al. Hydrogel microneedle-assisted assay integrating aptamer probes and fluorescence detection for reagentless biomarker quantification[J]. ACS Sensors, 2022, 7(8): 2387-2399.
|
21 |
CUI Yande, LI Dong, GONG Chen, et al. Bioinspired shape memory hydrogel artificial muscles driven by solvents[J]. ACS Nano, 2021, 15(8): 13712-13720.
|
22 |
WU Di, ZHANG Yu, CHEN Yong. Joint optimization method of spectrum resource for UAV swarm information transmission[J]. Electronics, 2022, 11(20): 3372.
|
23 |
WANG Hu, JI Xiaofan, PAGE Zachariah A, et al. Fluorescent materials-based information storage[J]. Materials Chemistry Frontiers, 2020, 4(4): 1024-1039.
|
24 |
LI Panpan, TIAN Ying, HUANG Feifei, et al. Highly efficient photostimulated luminescence of Pb2+ doped SrAl2O4: Eu2+, Dy3+ borate glass for long-term stable optical information storage[J]. Journal of the European Ceramic Society, 2022, 42(12): 5065-5073.
|
25 |
WANG Chen, YAN Qing, WANG Sheng, et al. A multi-stimuli responsive donor-acceptor Stenhouse adducts: Synthesis, aggregation-induced emission, multi-switch behavior and information storage[J]. Dyes and Pigments, 2022, 207: 110773.
|
26 |
YI Huijie, GAO Jingjing, LIN Siyang, et al. Photoresponsive α-cyanostilbene-containing fluorescent liquid crystal polymers based on ring-opening metathesis polymerization for information storage and encryption[J]. Polymer, 2022, 258: 125289.
|
27 |
SONG Hao, WU Xiuping, ZHANG Yanjie, et al. A flexible luminescence film with temperature and infrared response based on Eu2+/Dy3+ co-doped Sr2Si5N8 phosphors for optical information storage applications[J]. Heliyon, 2022, 8(8): e10045.
|
28 |
DUAN Tianyu, BIAN Qingyuan, LI Hongbin. Protein hydrogels with reversibly patterned multidimensional fluorescent images for information storage[J]. Biomacromolecules, 2022, 23(7): 3009-3016.
|
29 |
QI Shengyang, YUAN Weizhong. Robust and adhesive double-solvent phase change hydrogel with reversible transparency and shape memory for thermal management and information encryption[J]. Chemical Engineering Journal, 2023, 473: 145329.
|
30 |
YANG Hailong, LI Shengnan, ZHENG Jingxia, et al. Erasable, rewritable, and reprogrammable dual information encryption based on photoluminescent supramolecular host-guest recognition and hydrogel shape memory[J]. Advanced China Materials, 2023, 35(40): e2301300.
|
31 |
LI Wenbing, LIU Yanju, LENG Jinsong. Programmable and shape-memorizing information carriers[J]. ACS Applied Materials & Interfaces, 2017, 9(51): 44792-44798.
|
32 |
JIA Lei, ZHANG Beibei, XU Jun, et al. Chameleon luminophore for erasable encrypted and decrypted devices: From dual-channel, programmable, smart sensory lanthanide hydrogel to logic devices[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19955-19964.
|
33 |
WENG Gengsheng, THANNEERU Srinivas, HE Jie. Fluorochromic hydrogels: Dynamic coordination of Eu-iminodiacetate to control fluorochromic response of polymer hydrogels to multistimuli[J]. Advanced Materials, 2018, 30(11): 1870073.
|
34 |
LE Xiaoxia, LU Wei, HE Jiang, et al. Ionoprinting controlled information storage of fluorescent hydrogel for hierarchical and multi-dimensional decryption[J]. Science China Materials, 2019, 62(6): 831-839.
|
35 |
WANG Nan, YU Kangkang, LI Kun, et al. Plant-inspired multifunctional fluorescent hydrogel: A highly stretchable and recoverable self-healing platform with water-controlled adhesiveness for highly effective antibacterial application and data encryption-decryption[J]. ACS Applied Materials & Interfaces, 2020, 12(52): 57686-57694.
|
36 |
TANG Liuyan, LIAO Shanshan, QU Jinqing. Metallohydrogel with tunable fluorescence, high stretchability, shape-memory, and self-healing properties[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26346-26354.
|
37 |
Jun HAI, LI Tianrong, SU Junxia, et al. Reversible response of luminescent terbium(Ⅲ)-nanocellulose hydrogels to anions for latent fingerprint detection and encryption[J]. Angewandte Chemie International Edition, 2018, 57(23): 6786-6790.
|
38 |
LI Bo, LIN Cuiling, LU Chenjie, et al. A rapid and reversible thermochromic supramolecular polymer hydrogel and its application in protected quick response codes[J]. Materials Chemistry Frontiers, 2020, 4(3): 869-874.
|
39 |
WU Baoyi, LE Xiaoxia, JIAN Yukun, et al. pH and thermo dual-responsive fluorescent hydrogel actuator[J]. Macromolecular Rapid Communications, 2019, 40(4): e1800648.
|
40 |
SHANG Hui, LE Xiaoxia, SUN Yu, et al. Integrating photorewritable fluorescent information in shape-memory organohydrogel toward dual encryption[J]. Advanced Optical Materials, 2022, 10(13): 2200608.
|
41 |
ZHANG Yuchong, LE Xiaoxia, JIAN Yukun, et al. 3D fluorescent hydrogel origami for multistage data security protection[J]. Advanced Functional Materials, 2019, 29(46): 1905514.
|
42 |
HOU Li xin, DING Hongyao, HAO Xing peng, et al. Multi-level encryption of information in morphing hydrogels with patterned fluorescence[J]. Soft Matter, 2022, 18(11): 2149-2156.
|
43 |
ZHU Chaonan, BAI Tianwen, WANG Hu, et al. Dual-encryption in a shape-memory hydrogel with tunable fluorescence and reconfigurable architecture[J]. Advanced Materials, 2021,33(29): e2102023.
|
44 |
QIU Huiyu, WEI Shuxin, LIU Hao, et al. Programming multistate aggregation-induced emissive polymeric hydrogel into 3D structures for on-demand information decryption and transmission[J]. Advanced Intelligent Systems, 2021, 3(6): 2000239.
|
45 |
LI Shengnan, YANG Hailong, CHEN Guoqi, et al. 4D printing of biomimetic anisotropic self-sensing hydrogel actuators[J]. Chemical Engineering Journal, 2023, 473: 145444.
|
46 |
JI Xiaofan, WU Ren-Tsung, LONG Lingliang, et al. Encoding, reading, and transforming information using multifluorescent supramolecular polymeric hydrogels[J]. Advanced Materials, 2018, 30(11): 1705480.
|
47 |
GUO Dong, LE Xiaoxia, SHANG Hui, et al. Excitation-wavelength-dependent fluorescent organohydrogel for dynamic information anti-counterfeiting[J]. Chinese Chemical Letters, 2023, 34(11): 108347.
|
48 |
SUI Xiaojie, WANG Xiaodong, CAI Chengcheng, et al. AIE-active freeze-tolerant hydrogels enable multistage information encryption and decryption at subzero temperatures[J]. Engineering, 2023, 23: 82-89.
|
49 |
CHEN Chun, PANG Xuelei, LI Yajuan, et al. Dual Lewis acid- and base-responsive terpyridine-based hydrogel: Programmable and spatiotemporal regulation of fluorescence for chemical-based information security[J]. Inorganic Chemistry, 2023, 62(5): 2105-2115.
|
50 |
LAN Xinyi, XU Shanshan, SUN Chenxuan, et al. Multi-level information encryption/decryption of fluorescent hydrogels based on spatially programmed crystal phases[J]. Small, 2023, 19(9): e2205960.
|
51 |
SU Gongmeiyue, LI Zhao, GONG Junyi, et al. Information-storage expansion enabled by a resilient aggregation-induced-emission-active nanocomposite hydrogel[J]. Advanced Materials, 2022, 34(49): 2207212.
|
52 |
WANG Ruijia, ZHANG Yi, LU Wei, et al. Inside back cover: Bio-inspired structure-editing fluorescent hydrogel actuators for environment-interactive information encryption[J]. Angewandte Chemie International Edition, 2023, 62(23): 2305495.
|
53 |
TANG Liuyan, HUANG Jingtao, ZHANG He, et al. Multi-stimuli responsive hydrogels with shape memory and self-healing properties for information encryption[J]. European Polymer Journal, 2020, 140: 110061.
|
54 |
LE Xiaoxia, SHANG Hui, YAN Huizhen, et al. A urease-containing fluorescent hydrogel for transient information storage[J]. Angewandte Chemie International Edition, 2021, 60(7): 3640-3646.
|
55 |
YANG Caixia, XIAO Hangxiang, TANG Li, et al. A 3D multistage information encryption platform with self-erasure function based on a synergistically shape-deformable and AIE fluorescence-tunable hydrogel[J]. Materials Horizons, 2023, 10(7): 2496-2505.
|
56 |
XU Mengda, QIU Xiaxin, LIANG Shumin, et al. Phase-transition-triggered optical switching for multistage information encryption/decryption[J]. Advanced Optical Materials, 2023, 11(2): 2201737.
|
57 |
WANG Qian, LIN Biyan, CHEN Meng, et al. A dynamic assembly-induced emissive system for advanced information encryption with time-dependent security[J]. Nature Communications, 2022, 13(1): 4185.
|
58 |
LOU Dongyang, SUN Yujing, LI Jian, et al. Double lock label based on thermosensitive polymer hydrogels for information camouflage and multilevel encryption[J]. Angewandte Chemie International Edition, 2022, 61(16): e202117066.
|
59 |
WANG Qian, QI Zhen, WANG Qimeng, et al. A time-dependent fluorescent hydrogel for “time-lock” information encryption[J]. Advanced Functional Materials, 2022, 32(49): 2208865.
|