Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 3285-3292.DOI: 10.16085/j.issn.1000-6613.2023-0887
• Biochemical and pharmaceutical engineering • Previous Articles
JI Xiaoyan(), XU Rui, WANG Fei, LI Xun()
Received:
2023-05-30
Revised:
2023-11-08
Online:
2024-07-02
Published:
2024-06-15
Contact:
LI Xun
通讯作者:
李迅
作者简介:
季骁彦(1998—),男,硕士研究生,研究方向为生物质能源与化学品。E-mail:xiaoyanstuck@163.com。
基金资助:
CLC Number:
JI Xiaoyan, XU Rui, WANG Fei, LI Xun. Direct immobilization of Thermomyces lanuginosus lipase mediated by VKT-peptide for efficient biodiesel production from Jatropha curcas oil[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3285-3292.
季骁彦, 许蕊, 王飞, 李迅. VKT多肽介导的固定化疏棉状嗜热丝孢菌脂肪酶催化制备生物柴油[J]. 化工进展, 2024, 43(6): 3285-3292.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0887
洗脱剂 | 相对蛋白洗脱率/% |
---|---|
1mol/L NaCl | 2.0±0.1 |
2mol/L NaCl | 2.5±0.4 |
3mol/L NaCl | 5.6±0.2 |
4mol/L NaCl | 6.3±0.2 |
5mol/L NaCl | 12.7±0.9 |
1% Tween-20 | 1.6±0.2 |
2% Tween-20 | 1.3±0.2 |
3% Tween-20 | 4.4±1.5 |
1% SDS | 75.8±2.5 |
2% SDS | 100.0±1.1 |
3% SDS | 100.0±0.9 |
洗脱剂 | 相对蛋白洗脱率/% |
---|---|
1mol/L NaCl | 2.0±0.1 |
2mol/L NaCl | 2.5±0.4 |
3mol/L NaCl | 5.6±0.2 |
4mol/L NaCl | 6.3±0.2 |
5mol/L NaCl | 12.7±0.9 |
1% Tween-20 | 1.6±0.2 |
2% Tween-20 | 1.3±0.2 |
3% Tween-20 | 4.4±1.5 |
1% SDS | 75.8±2.5 |
2% SDS | 100.0±1.1 |
3% SDS | 100.0±0.9 |
1 | ZDARTA J, MEYER A, JESIONOWSKI T, et al. A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility[J]. Catalysts, 2018, 8(2): 92. |
2 | TAHSIRI Z, NIAKOUSARI M, HOSSEINI S M H, et al. Magnetic layered double hydroxide nanosheet as a biomolecular vessel for enzyme immobilization[J]. International Journal of Biological Macromolecules, 2022, 209: 1422-1429. |
3 | ZENG Qi, LI Qi, SUN Di, et al. Alcalase microarray base on metal ion modified hollow mesoporous silica spheres as a sustainable and efficient catalysis platform for proteolysis[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 565. |
4 | CHEN Jing, LENG Juan, YANG Xiai, et al. Enhanced performance of magnetic graphene oxide-immobilized laccase and its application for the decolorization of dyes[J]. Molecules, 2017, 22(2): 221. |
5 | SMITH S, GOODGE K, DELANEY M, et al. A comprehensive review of the covalent immobilization of biomolecules onto electrospun nanofibers[J]. Nanomaterials, 2020, 10(11): 2142. |
6 | ZENG Shuo, SHI Jinwei, FENG Anchao, et al. Modification of electrospun regenerate cellulose nanofiber membrane via atom transfer radical polymerization (ATRP) approach as advanced carrier for laccase immobilization[J]. Polymers, 2021, 13(2): 182. |
7 | DICOSIMO R, MCAULIFFE J, POULOSE A J, et al. Industrial use of immobilized enzymes[J]. Chemical Society Reviews, 2013, 42(15): 6437. |
8 | KATSIMPOURAS C, STEPHANOPOULOS G. Enzymes in biotechnology: Critical platform technologies for bioprocess development[J]. Current Opinion in Biotechnology, 2021, 69: 91-102. |
9 | TANG Zhenghua, PALAFOX-HERNANDEZ J P, Wing-Cheung LAW, et al. Biomolecular recognition principles for bionanocombinatorics: An integrated approach to elucidate enthalpic and entropic factors[J]. ACS Nano, 2013, 7(11): 9632-9646. |
10 | ZERNIA S, OTT F, BELLMANN-SICKERT K, et al. Peptide-mediated specific immobilization of catalytically active cytochrome P450 BM3 variant[J]. Bioconjugate Chemistry, 2016, 27(4): 1090-1097. |
11 | CARE A, BERGQUIST P L, SUNNA A. Solid-binding peptides: Smart tools for nanobiotechnology[J]. Trends in Biotechnology, 2015, 33(5): 259-268. |
12 | JANCIK PROCHAZKOVA A, SALINAS Y, YUMUSAK C, et al. Cyclic peptide stabilized lead halide perovskite nanoparticles[J]. Scientific Reports, 2019, 9: 12966. |
13 | CARE A, NEVALAINEN H, BERGQUIST P L, et al. Effect of Trichoderma reesei proteinases on the affinity of an inorganic-binding peptide[J]. Applied Biochemistry and Biotechnology, 2014, 173(8): 2225-2240. |
14 | SEKER U O S, SHARMA V K, AKHAVAN S, et al. Engineered peptides for nanohybrid assemblies[J]. Langmuir, 2014, 30(8): 2137-2143. |
15 | KUANG Zhifeng, KIM S N, CROOKES-GOODSON W J, et al. Biomimetic chemosensor: Designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors[J]. ACS Nano, 2010, 4(1): 452-458. |
16 | BANSAL R, ELGUNDI Z, GOODCHILD S C, et al. The effect of oligomerization on a solid-binding peptide binding to silica-based materials[J]. Nanomaterials, 2020, 10(6): 1070. |
17 | RAMACHANDRAN B, CHAKRABORTY S, KANNAN R, et al. Immobilization of hyaluronic acid from Lactococcus lactis on polyethylene terephthalate for improved biocompatibility and drug release[J]. Carbohydrate Polymers, 2019, 206: 132-140. |
18 | RÜBSAM K, STOMPS B, BÖKER A, et al. Anchor peptides: A green and versatile method for polypropylene functionalization[J]. Polymer, 2017, 116: 124-132. |
19 | RÜBSAM K, DAVARI M, JAKOB F, et al. KnowVolution of the polymer-binding peptide LCI for improved polypropylene binding[J]. Polymers, 2018, 10(4): 423. |
20 | LIU Chang, STEER D L, SONG Haipeng, et al. Superior binding of proteins on a silica surface: Physical insight into the synergetic contribution of polyhistidine and a silica-binding peptide[J]. The Journal of Physical Chemistry Letters, 2022, 13(6): 1609-1616. |
21 | CARE A, CHI Fei, BERGQUIST P L, et al. Biofunctionalization of silica-coated magnetic particles mediated by a peptide[J]. Journal of Nanoparticle Research, 2014, 16(8): 1-9. |
22 | LI Lulu, LONG Liangkun, DING Shaojun. Direct affinity-immobilized phenolic acid decarboxylase by a linker peptide on zeolite for efficient bioconversion of ferulic acid into 4-vinylguaiacol[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(39): 14732-14742. |
23 | YU Seung-Hye, KUMAR M, KIM Il Won, et al. A comparative analysis of in vitro toxicity of synthetic zeolites on IMR-90 human lung fibroblast cells[J]. Molecules, 2021, 26(11): 3194. |
24 | GUTIÉRREZ-LÓPEZ A N, MENA-CERVANTES V Y, GONZÁLEZ-ESPINOSA M A, et al. Green and fast biodiesel production at room temperature using soybean and Jatropha curcas L. oils catalyzed by potassium ferrate[J]. Journal of Cleaner Production, 2022, 372: 133739. |
25 | KALITA P, BASUMATARY B, SAIKIA P, et al. Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification[J]. Energy Nexus, 2022, 6: 100087. |
26 | WANG Qian, GUO Xuan, GE Meiling, et al. Engineering balanced anions coupling with tailored functional groups of poly(ionic liquid)s immobilized lipase enables effective biodiesel production[J]. Molecular Catalysis, 2022, 531: 112673. |
27 | Roberto FERNANDEZ-LAFUENTE. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst[J]. Journal of Molecular Catalysis B: Enzymatic, 2010, 62(3/4): 197-212. |
28 | MONTEIRO R R C, ARANA-PEÑA S, ROCHA T N DA, et al. Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?[J]. Renewable Energy, 2021, 164: 1566-1587. |
29 | XU Rui, CHEN Zirong, CHEN Yanyang, et al. Multiple strategies for high-efficiency expression of Thermomyces lanuginosus lipase in Pichia pastoris and production of biodiesel in solvent-free system[J]. Fuel, 2023, 333: 126246. |
30 | AMESHO K T T, LIN Yuan-Chung, CHEN Chinen, et al. Kinetics studies of sustainable biodiesel synthesis from Jatropha curcas oil by exploiting bio-waste derived CaO-based heterogeneous catalyst via microwave heating system as a green chemistry technique[J]. Fuel, 2022, 323: 123876. |
31 | GUTIÉRREZ-LÓPEZ A N, MENA-CERVANTES V Y, GARCÍA-SOLARES S M, et al. NaFeTiO4/Fe2O3-FeTiO3 as heterogeneous catalyst towards a cleaner and sustainable biodiesel production from Jatropha curcas L. oil[J]. Journal of Cleaner Production, 2021, 304: 127106. |
32 | GIWA A, ADEYEMI I, DINDI A, et al. Techno-economic assessment of the sustainability of an integrated biorefinery from microalgae and Jatropha: A review and case study[J]. Renewable and Sustainable Energy Reviews, 2018, 88: 239-257. |
33 | GO A W, SUTANTO S, ZULLAIKAH S, et al. A new approach in maximizing and direct utilization of whole Jatropha curcas L. kernels in biodiesel production — Technological improvement[J]. Renewable Energy, 2016, 85: 759-765. |
34 | YAN Jinyong, ZHENG Xianliang, DU Lei, et al. Integrated lipase production and in situ biodiesel synthesis in a recombinant Pichia pastoris yeast: An efficient dual biocatalytic system composed of cell free enzymes and whole cell catalysts[J]. Biotechnology for Biofuels, 2014, 7(1): 1-8. |
35 | NICOLÁS P, LASSALLE V L, FERREIRA M L. Quantification of immobilized Candida antarctica lipase B (CALB) using ICP-AES combined with Bradford method[J]. Enzyme and Microbial Technology, 2017, 97: 97-103. |
36 | TIAN Kaiyuan, TAI Kee, B Jian Wei CHUA, et al. Directed evolution of Thermomyces lanuginosus lipase to enhance methanol tolerance for efficient production of biodiesel from waste grease[J]. Bioresource Technology, 2017, 245: 1491-1497. |
37 | ZHANG Meiling, Seung-Hyun JUN, Youngho WEE, et al. Activation of crosslinked lipases in mesoporous silica via lid opening for recyclable biodiesel production[J]. International Journal of Biological Macromolecules, 2022, 222: 2368-2374. |
38 | OKUMURA K, SATO K, KAMIOKA K, et al. Direct immobilization of triphenylphosphine palladium complexes on the external surface of zeolite Β[J]. Microporous and Mesoporous Materials, 2019, 288: 109571. |
39 | COSTA-SILVA T A, CARVALHO A K F, SOUZA C R F, et al. Highly effective Candida rugosa lipase immobilization on renewable carriers: Integrated drying and immobilization process to improve enzyme performance[J]. Chemical Engineering Research and Design, 2022, 183: 41-55. |
40 | GIRELLI A M, CHIAPPINI V. Renewable, sustainable, and natural lignocellulosic carriers for lipase immobilization: A review[J]. Journal of Biotechnology, 2023, 365: 29-47. |
41 | PARANDI E, SAFARIPOUR M, ABDELLATTIF M H, et al. Biodiesel production from waste cooking oil using a novel biocatalyst of lipase enzyme immobilized magnetic nanocomposite[J]. Fuel, 2022, 313: 123057. |
42 | NÁJERA-MARTÍNEZ E F, MELCHOR-MARTÍNEZ E M, SOSA-HERNÁNDEZ J E, et al. Lignocellulosic residues as supports for enzyme immobilization, and biocatalysts with potential applications[J]. International Journal of Biological Macromolecules, 2022, 208: 748-759. |
43 | ZHAO Junxin, MA Maomao, YAN Xianghui, et al. Immobilization of lipase on β-cyclodextrin grafted and aminopropyl-functionalized chitosan/Fe3O4 magnetic nanocomposites: An innovative approach to fruity flavor esters esterification[J]. Food Chemistry, 2022, 366: 130616. |
44 | KHOOBI M, KHALILVAND-SEDAGHEH M, RAMAZANI A, et al. Synthesis of polyethyleneimine (PEI) and β-cyclodextrin grafted PEI nanocomposites with magnetic cores for lipase immobilization and esterification[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(2): 375-384. |
45 | RIOS N S, NETO D M A, DOS SANTOS J C S, et al. Comparison of the immobilization of lipase from Pseudomonas fluorescens on divinylsulfone or p-benzoquinone activated support[J]. International Journal of Biological Macromolecules, 2019, 134: 936-945. |
46 | RABBANI G, AHMAD E, AHMAD A, et al. Structural features, temperature adaptation and industrial applications of microbial lipases from psychrophilic, mesophilic and thermophilic origins[J]. International Journal of Biological Macromolecules, 2023, 225: 822-839. |
47 | MEHDI W A, MEHDE A A, ÖZACAR M, et al. Characterization and immobilization of protease and lipase on chitin-starch material as a novel matrix[J]. International Journal of Biological Macromolecules, 2018, 117: 947-958. |
48 | KHAN M F, KUNDU D, HAZRA C, et al. A strategic approach of enzyme engineering by attribute ranking and enzyme immobilization on zinc oxide nanoparticles to attain thermostability in mesophilic Bacillus subtilis lipase for detergent formulation[J]. International Journal of Biological Macromolecules, 2019, 136: 66-82. |
49 | ZHANG Huaxia, LIU Tianshu, ZHU Yawei, et al. Lipases immobilized on the modified polyporous magnetic cellulose support as an efficient and recyclable catalyst for biodiesel production from Yellow horn seed oil[J]. Renewable Energy, 2020, 145: 1246-1254. |
50 | OTARI S V, PATEL S K S, KALIA V C, et al. One-step hydrothermal synthesis of magnetic rice straw for effective lipase immobilization and its application in esterification reaction[J]. Bioresource Technology, 2020, 302: 122887. |
51 | ZHANG Jun, CHEN Xiaoyan, Pengmei LYU, et al. Bionic-immobilized recombinant lipase obtained via bio-silicification and its catalytic performance in biodiesel production[J]. Fuel, 2021, 304: 121594. |
52 | MIAO Changlin, YANG Lingmei, WANG Zhongming, et al. Lipase immobilization on amino-silane modified superparamagnetic Fe3O4 nanoparticles as biocatalyst for biodiesel production[J]. Fuel, 2018, 224: 774-782. |
53 | ABDULMALEK S A, LI Kai, WANG Jianhua, et al. Enhanced performance of Rhizopus oryzae lipase immobilized onto a hybrid-nanocomposite matrix and its application for biodiesel production under the assistance of ultrasonic technique[J]. Fuel Processing Technology, 2022, 232: 107274. |
[1] | WANG Bicong, PAN Dawei, XIE Rui, JU Xiaojie, LIU Zhuang, WANG Wei, CHU Liangyin. Fabrication of multi-enzyme@ZIF-8 for extraction of anthocyanins from black rice [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1403-1411. |
[2] | LU Shaojie, LIU Jia, JI Qianzhu, LI Ping, HAN Yueyang, TAO Min, LIANG Wenjun. Preparation of diatomaceous earth-based composite filler and its xylene removal performance by a biotrickling filter [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3884-3892. |
[3] | ZHANG Yaodan, SUN Ruoxi, CHEN Pengcheng. Advances of multi-enzyme co-immobilization carrier based on cascade reactions [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3167-3176. |
[4] | MAO Menglei, MENG Lingding, GAO Rui, MENG Zihui, LIU Wenfang. Research progress on enzyme immobilization on porous framework materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2516-2535. |
[5] | YUE Xin, LI Chunying, SUN Dao’an, LI Jiangwei, DU Yongmei, MA Hui, LYU Jian. Progress on heterogeneous catalysts for cyclopropanation of diazo compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2390-2401. |
[6] | JIN Xin, LI Yushan, XIE Qingqing, WANG Mengyu, XIA Xingfan, YANG Chaohe. Progress on solketal synthesis catalyzed by porous materials [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 731-743. |
[7] | QIN Zhenfang, LIAO Rihong, MA Weifang. Research progress on absorption-microalgae fixation of low concentration CO2 and synchronous oil production in gas power plant [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 94-106. |
[8] | MENG Lingding, MAO Menglei, LIAO Qiyong, MENG Zihui, LIU Wenfang. Recent advance in stability of carbonic anhydrase and formate dehydrogenase [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 436-447. |
[9] | ZHAO Jianbing, YANG Dan, SHU Yuancao, ZHU Junbo, PU Shiping, SONG Xiaodan, LIU Shouqing, CHAI Xijuan, LI Xuemei. Preparation of Na2CO3 /CF solid base and its catalytic transesterification of rapeseed oil [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3608-3614. |
[10] | TANG Ting, ZHOU Wenfeng, WANG Zhi, ZHU Chenjie, XU Jingliang, ZHUANG Wei, YING Hanjie, OUYANG Pingkai. Advances of multienzymes co-immobilization technology for sugar catalysis [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2636-2648. |
[11] | ZOU Pengcheng, JIN Guangyuan, LI Zhenfeng, SONG Chunfang, HAN Taibai, ZHU Yulian. Analysis of multi-physical field characteristics in a microwave reactor with a mode stirrer [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2301-2310. |
[12] | MAO Menglei, SUN Danyang, MENG Zihui, LIU Wenfang. Enzyme immobilization on graphene oxide and transition metal carbon/nitrogen compounds [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1941-1955. |
[13] | ZHANG Yan, WANG Wei, XIE Rui, JU Xiaojie, LIU Zhuang, CHU Liangyin. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8 [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028. |
[14] | MA Xin, WANG Shuang, LI Fashe, ZHANG Yishui, JIANG Shang. Simulation and experimental research on the atomization characteristics of waste oil biodiesel [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 655-665. |
[15] | DAI Jingxin, SONG Wei, CHEN Xiulai, LIU Liming, WU Jing. ZIF-8-glutaraldehyde-immobilized cells to produce α-ketoglutaric acid [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6522-6530. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |