Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2851-2861.DOI: 10.16085/j.issn.1000-6613.2023-2048
• Chemical processes integration and optimization • Previous Articles
LI Jingying1,2(), MA Longfei1, ZHANG Hongjuan1, PAN Yibo1, LU Shan1, XU Long1,2, MA Xiaoxun1,2()
Received:
2023-11-23
Revised:
2023-12-19
Online:
2024-06-15
Published:
2024-05-15
Contact:
MA Xiaoxun
李晶莹1,2(), 马龙飞1, 张红娟1, 潘一搏1, 卢山1, 徐龙1,2, 马晓迅1,2()
通讯作者:
马晓迅
作者简介:
李晶莹(1990—),女,博士,副教授,硕士生导师,研究方向为生命周期可持续性评价与多目标集成优化。E-mail:lijingying99@nwu.edu.cn。
基金资助:
CLC Number:
LI Jingying, MA Longfei, ZHANG Hongjuan, PAN Yibo, LU Shan, XU Long, MA Xiaoxun. Current status and research progress of life cycle assessment method in pharmaceutical field[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2851-2861.
李晶莹, 马龙飞, 张红娟, 潘一搏, 卢山, 徐龙, 马晓迅. 生命周期评价方法在医药领域的应用现状与研究进展[J]. 化工进展, 2024, 43(5): 2851-2861.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2048
数据库名称 | 国家/地区 | 简介 |
---|---|---|
Ecoinvent | 瑞士 | Ecoinvent数据库涵盖了欧洲及世界各国19000多种产品的单元过程和汇总过程数据集(3.8版),包含各种常见物质的LCA清单数据,是国际LCA领域使用最广泛的数据库之一,也是许多机构指定的基础数据库之一 |
ELCD | 欧盟 | ELCD数据库涵盖了欧盟440多种大宗能源、原材料、运输的汇总LCI数据集,是欧盟环境总署和成员国政府机构指定的基础数据库之一 |
GaBi | 德国 | GaBi数据库(2022年更新后)包括世界各国和各行业的17000个汇总过程数据集,涵盖了建筑与施工、化学品和材料、消费品等16个行业 |
U.S.LCI | 美国 | U.S.LCI数据库包含了950多个单元过程数据集及390个汇总过程数据集,涵盖常用的材料生产、能源生产、运输等过程 |
KCLCD | 韩国 | KCLCD数据库包含了393个汇总过程数据,涵盖物质及配件的制造、加工、运输、废物处置等过程 |
IDEA | 日本 | IDEA数据库包含了4700条非制造业、制造业及其他部门的LCI数据集,涵盖了日本标准商品分类范围内的所有产品 |
CLCD | 中国 | CLCD数据库由亿科环境自主开发,是目前国内唯一达到自身生命周期完整的基础数据库,包含数百种大宗能源、原材料、化学品的上千个生产过程数据,数据均来自中国本国行业统计、相关标准、企业公开报告等。CLCD数据库发布公开透明的CLCD数据库文档,并将发布可在线追溯的原始模型[ |
CPCD | 中国 | CPCD为中国产品全生命周期温室气体排放系数库,涵盖了1081条能源产品、工业产品、生活产品、交通服务、废弃物处理和碳汇的数据集。数据集包括产品上游排放、下游排放、排放环节、温室气体占比、不确定性、数据时间、参考文献或数据来源等信息 |
SinoCenter | 中国 | SinoCenter数据库由北京工业大学开发,涵盖了材料生命周期分析基础数据十余万条,包含公用系统、典型材料(建筑材料、钢铁、有色金属、高分子材料、连接材料)等70多个我国材料LCA数据集产品,被国内外广泛应用 |
数据库名称 | 国家/地区 | 简介 |
---|---|---|
Ecoinvent | 瑞士 | Ecoinvent数据库涵盖了欧洲及世界各国19000多种产品的单元过程和汇总过程数据集(3.8版),包含各种常见物质的LCA清单数据,是国际LCA领域使用最广泛的数据库之一,也是许多机构指定的基础数据库之一 |
ELCD | 欧盟 | ELCD数据库涵盖了欧盟440多种大宗能源、原材料、运输的汇总LCI数据集,是欧盟环境总署和成员国政府机构指定的基础数据库之一 |
GaBi | 德国 | GaBi数据库(2022年更新后)包括世界各国和各行业的17000个汇总过程数据集,涵盖了建筑与施工、化学品和材料、消费品等16个行业 |
U.S.LCI | 美国 | U.S.LCI数据库包含了950多个单元过程数据集及390个汇总过程数据集,涵盖常用的材料生产、能源生产、运输等过程 |
KCLCD | 韩国 | KCLCD数据库包含了393个汇总过程数据,涵盖物质及配件的制造、加工、运输、废物处置等过程 |
IDEA | 日本 | IDEA数据库包含了4700条非制造业、制造业及其他部门的LCI数据集,涵盖了日本标准商品分类范围内的所有产品 |
CLCD | 中国 | CLCD数据库由亿科环境自主开发,是目前国内唯一达到自身生命周期完整的基础数据库,包含数百种大宗能源、原材料、化学品的上千个生产过程数据,数据均来自中国本国行业统计、相关标准、企业公开报告等。CLCD数据库发布公开透明的CLCD数据库文档,并将发布可在线追溯的原始模型[ |
CPCD | 中国 | CPCD为中国产品全生命周期温室气体排放系数库,涵盖了1081条能源产品、工业产品、生活产品、交通服务、废弃物处理和碳汇的数据集。数据集包括产品上游排放、下游排放、排放环节、温室气体占比、不确定性、数据时间、参考文献或数据来源等信息 |
SinoCenter | 中国 | SinoCenter数据库由北京工业大学开发,涵盖了材料生命周期分析基础数据十余万条,包含公用系统、典型材料(建筑材料、钢铁、有色金属、高分子材料、连接材料)等70多个我国材料LCA数据集产品,被国内外广泛应用 |
年份/年 | 评价目的 | 功能单位 | 研究结果 | 参考文献 |
---|---|---|---|---|
2015 | 分析废弃温度计中汞的不同处理方式下的环境影响 | 温度计中1kg汞废弃物 | 消除露天倾倒废弃温度计中的汞和提高汞的回收率,可以大幅度减少汞对环境的影响,并且在进行汞回收时,减压蒸馏工艺优于手工蒸馏工艺 | [ |
2016 | 分析一家医院七种医疗器械不同程度处理方式的环境影响 | 一家综合医疗外科医院中的七种医疗设备(深静脉血栓形成压缩套管、脉搏血氧仪、韧带、电脑反馈控制双极切割刀片、腹腔镜套管针、关节镜和剪刀) | 在全球变暖潜值(GWP 100 years)影响方面,加压套管和韧带对环境影响最大,剪刀对环境影响最小。对于这些器械,环氧乙烷、电力和水的优化将进一步降低对环境影响 | [ |
2017 | 比较计量吸入器和电动雾化器的全球变暖潜值 | 一剂硫酸沙丁胺醇 | 在全球变暖潜值(GWP 100 years)影响方面,计量吸入器(0.0972kg CO2)明显高于电动雾化器(0.0294kg CO2) | [ |
2021 | 评价医用口罩生产和消费的环境热点 | 2020年(2020年2月1日—2020年12月31日)在中国生产的医用外科口罩和N95口罩的总和 | 在COVID-19病毒发生期间,医用外科口罩大幅消耗导致聚丙烯消费量剧增,人类健康、环境质量、气候变化和资源类别的损害加深;同时,处理不当的废弃口罩进一步加深了环境危害 | [ |
2021 | 分析可重复使用电生理导管的环境影响 | 生产一根一次性电生理导管和一根可重复使用电生理导管 | 在全球变暖潜值(GWP 100 years)影响方面,可重复使用电生理导管相较于一次性电生理导管可减少50.4%,化石资源消耗减少28.8% | [ |
2022 | 分析可重复使用电生理导管的环境排放 | 生产一根一次性电生理导管和一根可重复使用电生理导管(与上述型号不同) | 可重复使用电生理导管相比于一次性电生理导管可减少60%的温室气体排放;且通过长期生产再循环电生理导管,总排放减少依然可达48% | [ |
2022 | 分析两种不同类型的医用吻合器对环境的影响 | 生产一个旋转头式医用吻合器和一个一次性医用吻合器 | 相比于没有加钢的医用吻合器,加钢的医用吻合器在富营养化、化石资源消耗和生态毒性方面明显高于一次性医用吻合器,且环境影响取决于加入的塑料质量 | [ |
2023 | 对比分析一次性防护服 和可重复使用防护服的环境足迹 | 分别生产1000kg一次性防护服和可重复使用防护服 | 全球变暖效应与陆地生态毒性在生命周期阶段中占主要地位,且一次性防护服环境各影响类别远大于可重复使用防护服 | [ |
年份/年 | 评价目的 | 功能单位 | 研究结果 | 参考文献 |
---|---|---|---|---|
2015 | 分析废弃温度计中汞的不同处理方式下的环境影响 | 温度计中1kg汞废弃物 | 消除露天倾倒废弃温度计中的汞和提高汞的回收率,可以大幅度减少汞对环境的影响,并且在进行汞回收时,减压蒸馏工艺优于手工蒸馏工艺 | [ |
2016 | 分析一家医院七种医疗器械不同程度处理方式的环境影响 | 一家综合医疗外科医院中的七种医疗设备(深静脉血栓形成压缩套管、脉搏血氧仪、韧带、电脑反馈控制双极切割刀片、腹腔镜套管针、关节镜和剪刀) | 在全球变暖潜值(GWP 100 years)影响方面,加压套管和韧带对环境影响最大,剪刀对环境影响最小。对于这些器械,环氧乙烷、电力和水的优化将进一步降低对环境影响 | [ |
2017 | 比较计量吸入器和电动雾化器的全球变暖潜值 | 一剂硫酸沙丁胺醇 | 在全球变暖潜值(GWP 100 years)影响方面,计量吸入器(0.0972kg CO2)明显高于电动雾化器(0.0294kg CO2) | [ |
2021 | 评价医用口罩生产和消费的环境热点 | 2020年(2020年2月1日—2020年12月31日)在中国生产的医用外科口罩和N95口罩的总和 | 在COVID-19病毒发生期间,医用外科口罩大幅消耗导致聚丙烯消费量剧增,人类健康、环境质量、气候变化和资源类别的损害加深;同时,处理不当的废弃口罩进一步加深了环境危害 | [ |
2021 | 分析可重复使用电生理导管的环境影响 | 生产一根一次性电生理导管和一根可重复使用电生理导管 | 在全球变暖潜值(GWP 100 years)影响方面,可重复使用电生理导管相较于一次性电生理导管可减少50.4%,化石资源消耗减少28.8% | [ |
2022 | 分析可重复使用电生理导管的环境排放 | 生产一根一次性电生理导管和一根可重复使用电生理导管(与上述型号不同) | 可重复使用电生理导管相比于一次性电生理导管可减少60%的温室气体排放;且通过长期生产再循环电生理导管,总排放减少依然可达48% | [ |
2022 | 分析两种不同类型的医用吻合器对环境的影响 | 生产一个旋转头式医用吻合器和一个一次性医用吻合器 | 相比于没有加钢的医用吻合器,加钢的医用吻合器在富营养化、化石资源消耗和生态毒性方面明显高于一次性医用吻合器,且环境影响取决于加入的塑料质量 | [ |
2023 | 对比分析一次性防护服 和可重复使用防护服的环境足迹 | 分别生产1000kg一次性防护服和可重复使用防护服 | 全球变暖效应与陆地生态毒性在生命周期阶段中占主要地位,且一次性防护服环境各影响类别远大于可重复使用防护服 | [ |
1 | International Organization for Standardization. Environmental management life cycle assessment principles and framework: [S]. British: International Standard, 2006. |
2 | 刘蔚, 毛开伟, 张廷军, 等. 生命周期评价体系的开发及其在生物质资源化领域的应用进展[J]. 环境工程, 2019, 37: 384-388. |
LIU Wei, MAO Kaiwei, ZHANG Tingjun, et al. Development of life cycle assessment and application in biomass resource recovery[J]. Environmental Engineering, 2019, 37: 384-388. | |
3 | International Organization for Standardization. Environmental management life cycle assessment requirements and guidelines: [S]. British: International Standard, 2006. |
4 | 翟一杰, 张天祚, 申晓旭, 等. 生命周期评价方法研究进展[J]. 资源科学, 2021, 43(3): 446-455. |
ZHAI Yijie, ZHANG Tianzuo, SHEN Xiaoxu, et al. Development of life cycle assessment method[J]. Resources Science, 2021, 43(3): 446-455. | |
5 | 王长波, 张力小, 庞明月. 生命周期评价方法研究综述——兼论混合生命周期评价的发展与应用[J]. 自然资源学报, 2015, 30(7): 1232-1242. |
WANG Changbo, ZHANG Lixiao, PANG Mingyue. A review on hybrid life cycle assessment: Development and application[J]. Journal of Natural Resources, 2015, 30(7): 1232-1242. | |
6 | 亿科环境科技. 中国生命周期评价基础数据库CLCD[EB/OL]. . |
Integrated Knowledge for our Environment(IKE).China life cycle assessment basic database(CLCD)[EB/OL]. . | |
7 | 邹伦贵. 碳足迹认证LCA数据库应用现状研究[J]. 中国质量, 2023(8): 92-95. |
ZOU Lungui. Research on application status of carbon footprint certification LCA database[J]. China Quality, 2023(8): 92-95. | |
8 | DREYER Louise Camilla, NIEMANN Anne Louise, HAUSCHILD Michael Z. Comparison of three different LCIA methods: EDIP97, CML2001 and Eco-indicator 99[J]. The International Journal of Life Cycle Assessment, 2003, 8(4): 191-200. |
9 | 谢明辉, 满贺诚, 段华波, 等. 生命周期影响评价方法及本地化研究进展[J]. 环境工程技术学报, 2022, 12(6): 2148-2156. |
XIE Minghui, MAN Hecheng, DUAN Huabo, et al. Research progress on the life cycle impact assessment methods and their localization in China[J]. Journal of Environmental Engineering Technology, 2022, 12(6): 2148-2156. | |
10 | TOFFOLETTO Laurence, BULLE Cécile, GODIN Julie, et al. LUCAS—A new LCIA method used for a Canadian-specific context[J]. The International Journal of Life Cycle Assessment, 2007, 12(2): 93-102. |
11 | BARE Jane. TRACI 2.0: The tool for the reduction and assessment of chemical and other environmental impacts 2.0[J]. Clean Technologies and Environmental Policy, 2011, 13(5): 687-696. |
12 | AUDENAERT Amaryllis, DE CLEYN Sven H, BUYLE Matthias. LCA of low-energy flats using the Eco-indicator 99 method: Impact of insulation materials[J]. Energy Buildings, 2012, 4768-4773. |
13 | JOLLIET Olivier, MARGNI Manuele, CHARLES Raphaël, et al. IMPACT 2002+: A new life cycle impact assessment methodology[J]. The International Journal of Life Cycle Assessment, 2003, 8(6): 324-330. |
14 | OWSIANIAK Mikołaj, LAURENT Alexis, Anders BJØRN, et al. IMPACT 2002+, ReCiPe 2008 and ILCD’s recommended practice for characterization modelling in life cycle impact assessment: A case study-based comparison[J]. The International Journal of Life Cycle Assessment, 2014, 19(5): 1007-1021. |
15 | 杨建新, 王如松, 刘晶茹. 中国产品生命周期影响评价方法研究[J]. 环境科学学报, 2001, 21(2): 234-237. |
YANG Jianxin, WANG Rusong, LIU Jingru. Methodology of life cycle impact assessment for Chinese products[J]. Acta Scientiae Circumstantiae, 2001, 21(2): 234-237. | |
16 | 王洪涛. 通往节能减排目标的新途径——生命周期节能减排评价方法[J]. 高科技与产业化, 2011(8): 49-53. |
WANG Hongtao. A new approach to the target of energy saving and emission reduction—Life cycle assessment method for energy saving and emission reduction[J]. High-Technology & Industrialization, 2011(8): 49-53. | |
17 | 李晶莹. 焦化多联产系统的生命周期评价与系统分析[D]. 西安: 西北大学, 2018. |
LI Jingying. Life cycle assessment and system analysis of coking poly-generation system[D]. Xi’an: Northwest University, 2018. | |
18 | SIEGERT Marc-William, LEHMANN Annekatrin, EMARA Yasmine, et al. Harmonized rules for future LCAs on pharmaceutical products and processes[J]. The International Journal of Life Cycle Assessment, 2019, 24(6): 1040-1057. |
19 | ROSCHANGAR Frank, LI Jun, ZHOU Yanyan, et al. Improved iGAL 2.0 metric empowers pharmaceutical scientists to make meaningful contributions to united nations sustainable development goal 12[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(16): 5148-5162. |
20 | RAYMOND Michael J, Stewart SLATER C, SAVELSKI Mariano J. LCA approach to the analysis of solvent waste issues in the pharmaceutical industry[J]. Green Chemistry, 2010, 12(10): 1826-1834. |
21 | Denise OTT, BORUKHOVA Svetlana, HESSEL Volker. Life cycle assessment of multi-step rufinamide synthesis—From isolated reactions in batch to continuous microreactor networks[J]. Green Chemistry, 2016, 18(4): 1096-1116. |
22 | KONG Weixin, Bihong LYU, YANG Siqi, et al. Case study on environmental safety and sustainability of pharmaceutical production based on life cycle assessment of enrofloxacin[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105734. |
23 | 杨珂宣. 药品生产工艺环境绩效评价模型及LCA优化研究——以乳酸环丙沙星为例[D]. 泉州: 华侨大学, 2021. |
YANG Kexuan. Research on environmental performance evaluation model and LCA optimization of pharmaceutical production process[D]. Quanzhou: Huaqiao University, 2021. | |
24 | AMADO ALVIZ Patricia Lucía, ALVAREZ Alejandro J. Comparative life cycle assessment of the use of an ionic liquid ([Bmim]Br) versus a volatile organic solvent in the production of acetylsalicylic acid[J]. Journal of Cleaner Production, 2017, 168: 1614-1624. |
25 | HADINOTO Kunn, TRAN The-Thien, CHEOW Wean Sin. Beyond Tablets’ physical characteristics: Incorporating environmental sustainability metrics into the selection of lubricants for pharmaceutical tableting[J]. Journal of Cleaner Production, 2022, 362: 132336. |
26 | SHARMA Rachit Kumar, RAJU Geo, SARKAR Prabir, et al. Comparing the environmental impacts of paracetamol dosage forms using life cycle assessment[J]. Environment, Development and Sustainability, 2022, 24(10): 12446-12466. |
27 | BASSANI Fabiana, RODRIGUES Carla, MARQUES Pedro, et al. Ecodesign approach for pharmaceutical packaging based on life cycle assessment[J]. The Science of the Total Environment, 2022, 816: 151565. |
28 | BASSANI Fabiana, RODRIGUES Carla, MARQUES Pedro, et al. Life cycle assessment of pharmaceutical packaging[J]. The International Journal of Life Cycle Assessment, 2022, 27(7): 978-992. |
29 | SIEGERT Marc-William, SALING Peter, MIELKE Pascal, et al. Cradle-to-grave life cycle assessment of an ibuprofen analgesic[J]. Sustainable Chemistry and Pharmacy, 2020, 18: 100329. |
30 | ARGOUD Sarah, BUDZINSKI Kristi, Daniel D'AQUILA, et al. Green metrics for biologics[J]. Current Opinion in Green and Sustainable Chemistry, 2022, 35: 100614. |
31 | RENTERIA GAMIZ Ana Gabriela, DEWULF Jo, DE SOETE Wouter, et al. Freeze drying in the biopharmaceutical industry: An environmental sustainability assessment[J]. Food and Bioproducts Processing, 2019, 117: 213-223. |
32 | 尹阳阳. 基于LCA&LCC的生物质能源气化循环利用系统的综合评价[D]. 天津: 天津大学, 2018. |
YIN Yangyang. Comprehensive evaluation of biomass gasification and recycling system based on LCA&LCC[D]. Tianjin: Tianjin University, 2018. | |
33 | LIU Yigang, LI Guoxuan, CHEN Zhengrun, et al. Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment[J]. Energy, 2020, 204: 117961. |
34 | 刘梦佳, 杨茂华, 刘新育, 等. 中药渣处理及其生命周期分析的研究进展[J]. 时珍国医国药, 2021, 32(7): 1714-1717. |
LIU Mengjia, YANG Maohua, LIU Xinyu, et al. Research progress on treatment and life cycle analysis of traditional Chinese medicine residue[J]. Lishizhen Medicine and Materia Medica Research, 2021, 32(7): 1714-1717. | |
35 | SOUSA Ana Catarina, VEIGA Anabela, MAURÍCIO Ana Colette, et al. Assessment of the environmental impacts of medical devices: A review[J]. Environment Development and Sustainability, 2021, 23(7): 9641-9666. |
36 | YAMANOOR Srihari. Do medical device designers need to care about life cycle assessment?[C]// Materials and Processes for Medical Devices Conference and Exposition. Minneapolis, USA: Materials and Processes for Medical Devices American Society for Metals, 2011. |
37 | MOULTRIE James, SUTCLIFFE Laura, MAIER Anja. A maturity grid assessment tool for environmentally conscious design in the medical device industry[J]. Journal of Cleaner Production, 2016, 122: 252-265. |
38 | GAVILÁN-GARCÍA Irma C, Georgina FERNÁNDEZ-VILLAGOMEZ, Arturo GAVILÁN-GARCÍA, et al. Alternatives of management and disposal for mercury thermometers at the end of their life from Mexican health care institutions[J]. Journal of Cleaner Production, 2015, 86: 118-124. |
39 | UNGER Scott, LANDIS Amy. Assessing the environmental, human health, and economic impacts of reprocessed medical devices in a Phoenix hospital’s supply chain[J]. Journal of Cleaner Production, 2016, 112: 1995-2003. |
40 | GOULET Brandon, OLSON Lars, MAYER Brooke. A comparative life cycle assessment between a metered dose inhaler and electric nebulizer[J]. Sustainability, 2017, 9(10): 1725. |
41 | TABATABAEI Meisam, Homa HOSSEINZADEH-BANDBAFHA, YANG Yi, et al. Exergy intensity and environmental consequences of the medical face masks curtailing the COVID-19 pandemic: Malign bodyguard?[J]. Journal of Cleaner Production, 2021, 313: 127880. |
42 | VAN STRATEN Bart, LIGTELIJN S, DROOG L, et al. A life cycle assessment of reprocessing face masks during the COVID-19 pandemic[J]. Scientific Reports, 2021, 11(1): 17680. |
43 | SCHULTE Anna, MAGA Daniel, THONEMANN Nils. Combining life cycle assessment and circularity assessment to analyze environmental impacts of the medical remanufacturing of electrophysiology catheters[J]. Sustainability, 2021, 13(2): 898. |
44 | MEISTER Julia A, SHARP Jack, WANG Yan, et al. Assessing long-term medical remanufacturing emissions with life cycle analysis[J]. Processes, 2022, 11(1): 36. |
45 | FREUND Julissa, GAST Katherine, ZUEGGE Karin, et al. Environmental considerations in the selection of medical staplers: A comparative life cycle assessment[J]. Journal of Cleaner Production, 2022, 371: 133490. |
46 | HILOIDHARI Moonmoon, BANDYOPADHYAY Somnath. Environmental footprints of disposable and reusable personal protective equipment—A product life cycle approach for body coveralls[J]. Journal of Cleaner Production, 2023, 394: 136166. |
47 | ECKELMAN Matthew J, SHERMAN Jodi D. Estimated global disease burden from US health care sector greenhouse gas emissions[J]. American Journal of Public Health, 2018, 108(S2): S120-S122. |
48 | GORDON Ilyssa O, SHERMAN Jodi D, LEAPMAN Michael, et al. Life cycle greenhouse gas emissions of gastrointestinal biopsies in a surgical pathology laboratory[J]. American Journal of Clinical Pathology, 2021, 156(4): 540-549. |
49 | THIEL Cassandra L, ECKELMAN Matthew, GUIDO Richard, et al. Environmental impacts of surgical procedures: Life cycle assessment of hysterectomy in the United States[J]. Environmental Science & Technology, 2015, 49(3): 1779-1786. |
50 | LICHTER Katie E, CHARBONNEAU Kiley, SABBAGH Ali, et al. Evaluating the environmental impact of radiation therapy using life cycle assessments: A critical review[J]. International Journal of Radiation Oncology‘Biology’Physics, 2023, 117(3): 554-567. |
51 | THIEL Cassandra L, Andy CASSELS-BROWN, GOEL Hena, et al. Utilizing off-the-shelf LCA methods to develop a ‘triple bottom line’ auditing tool for global cataract surgical services[J]. Resources, Conservation and Recycling, 2020, 158: 104805. |
52 | HERNÁNDEZ-DE-ANDA Marco T, Paul TABOADA-GONZÁLEZ, Quetzalli AGUILAR-VIRGEN, et al. Environmental impacts of a Mexican hemodialysis unit through LCA[J]. Journal of Cleaner Production, 2023, 384: 135480. |
53 | PRASAD Purnima Aishwarya, JOSHI Dhruvi, LIGHTER Jennifer, et al. Environmental footprint of regular and intensive inpatient care in a large US hospital[J]. The International Journal of Life Cycle Assessment, 2022, 27(1): 38-49. |
54 | CIMPRICH Alexander, YOUNG Steven B. Environmental footprinting of hospitals: Organizational life cycle assessment of a Canadian hospital[J]. Journal of Industrial Ecology, 2023, 27(5): 1335-1353. |
55 | Denise OTT, KRALISCH Dana, Ivana DENČIĆ, et al. Life cycle analysis within pharmaceutical process optimization and intensification: Case study of active pharmaceutical ingredient production[J]. ChemSusChem, 2014, 7(12): 3521-3533. |
56 | HUBER Elena, BACH Vanessa, HOLZAPFEL Peter, et al. An approach to determine missing life cycle inventory data for chemicals (RREM)[J]. Sustainability, 2022, 14(6): 3161. |
57 | PARVATKER Abhijeet G, TUNCEROGLU Huseyin, SHERMAN Jodi D, et al. Cradle-to-gate greenhouse gas emissions for twenty anesthetic active pharmaceutical ingredients based on process scale-up and process design calculations[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6580-6591. |
58 | CREADORE Lauren T, CASTALDI Marco J. Quantitative comparison of life cycle assessments of advanced recycling technologies for end-of-life plastics[J]. Journal of Energy Resources Technology, 2023, 145(4): 042201. |
[1] | GE Mingliang, TANG Wei. Progress in preparation of drug carriers based on Pickering emulsion [J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4586-4591. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |