Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2494-2511.DOI: 10.16085/j.issn.1000-6613.2023-2126
• New and renewable energy • Previous Articles
SHI Liu1(), HU Zhenzhong1, LI Xian1(), SUN Yiming1, TONG Shan1, LIU Xianzhe1, GUO Li1,2,3, LIU Hao1, PENG Bing1, LI Shuo1, LUO Guangqian1, YAO Hong1
Received:
2023-12-01
Revised:
2024-02-04
Online:
2024-06-15
Published:
2024-05-15
Contact:
LI Xian
石鎏1(), 胡振中1, 李显1(), 孙一鸣1, 童珊1, 刘显哲1, 郭丽1,2,3, 刘豪1, 彭冰1, 李硕1, 罗光前1, 姚洪1
通讯作者:
李显
作者简介:
石鎏(1995—),男,博士研究生,研究方向为能源化工及固体燃料燃烧。E-mail:liu_shi@hust.edu.cn。
基金资助:
CLC Number:
SHI Liu, HU Zhenzhong, LI Xian, SUN Yiming, TONG Shan, LIU Xianzhe, GUO Li, LIU Hao, PENG Bing, LI Shuo, LUO Guangqian, YAO Hong. Gas-pressurized torrefaction of biomass: A review[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2494-2511.
石鎏, 胡振中, 李显, 孙一鸣, 童珊, 刘显哲, 郭丽, 刘豪, 彭冰, 李硕, 罗光前, 姚洪. 生物质气压烘焙技术研究进展[J]. 化工进展, 2024, 43(5): 2494-2511.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2126
项目 | 常压烘焙 | 气压烘焙 |
---|---|---|
条件 | 250~300℃ | 200~250℃ |
常压 | 1~1.8MPa | |
10~120min | 15~60min | |
机制 | 热裂解反应 | 强化挥发分与生物质的二次反应 |
能耗 | 高 | 低 |
半焦品质 | 氧含量>30%;高位热值17~24MJ/kg | 氧含量约20%;高位热值23~28MJ/kg |
能量回收率70%~95% | 能量回收率85%~96% | |
可磨性好 | 可磨性好 | |
燃料品质近似泥煤 | 燃料品质近似次烟煤 |
项目 | 常压烘焙 | 气压烘焙 |
---|---|---|
条件 | 250~300℃ | 200~250℃ |
常压 | 1~1.8MPa | |
10~120min | 15~60min | |
机制 | 热裂解反应 | 强化挥发分与生物质的二次反应 |
能耗 | 高 | 低 |
半焦品质 | 氧含量>30%;高位热值17~24MJ/kg | 氧含量约20%;高位热值23~28MJ/kg |
能量回收率70%~95% | 能量回收率85%~96% | |
可磨性好 | 可磨性好 | |
燃料品质近似泥煤 | 燃料品质近似次烟煤 |
种类 | 样品 | 烘焙条件 | 工业分析(d.b.)/% | 元素分析(d.a.f.)/% | 高位热值(d.a.f.) /MJ·kg-1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
挥发分 | 固定碳 | 灰分 | C | H | N | O | ||||
农业生物质 | 稻秆1[ | 75.2 | 15.2 | 9.6 | 48.9 | 5.2 | 0.9 | 45.0 | 15.9 | |
250℃、15min常压烘焙 | 68.8 | 19.9 | 11.3 | 50.8 | 5.6 | 1.0 | 42.7 | 17.5 | ||
250℃、2.5MPa、15min气压烘焙 | 40.8 | 40.5 | 18.7 | 68.4 | 5.2 | 1.5 | 24.9 | 26.2 | ||
稻秆2[ | 75.2 | 15.1 | 9.7 | 45.8 | 6.0 | 1.1 | 47.1 | 15.7 | ||
250℃、60min常压烘焙 | 72.1 | 15.9 | 12.1 | 53.2 | 6.0 | 1.3 | 39.5 | 19.7 | ||
250℃、1.8MPa、60min气压烘焙 | 45.9 | 36.0 | 18.2 | 70.8 | 5.5 | 1.9 | 21.8 | 28.0 | ||
玉米秸秆[ | 72.7 | 19.6 | 7.7 | 43.7 | 5.3 | 2.8 | 48.2 | 17.6 | ||
250℃、30min常压烘焙 | 66.6 | 22.3 | 11.1 | 45.4 | 4.9 | 2.3 | 47.4 | 18.2 | ||
250℃、2.5MPa N2、30min气压烘焙 | 49.5 | 35.7 | 14.8 | 56.7 | 4.5 | 2.5 | 36.3 | 22.2 | ||
芦苇[ | 70.0 | 18.1 | 11.9 | 44.5 | 5.7 | 1.7 | 48.1 | 14.6 | ||
270℃、30min常压烘焙 | 35.3 | 47.0 | 17.7 | 51.4 | 5.1 | 2.1 | 41.4 | 17.3 | ||
270℃、2.5MPa N2、30min气压烘焙 | 30.9 | 43.4 | 25.7 | 59.6 | 4.0 | 3.0 | 33.4 | 19.9 | ||
林业生物质 | 松木1[ | 85.5 | 14.1 | 0.4 | 50.3 | 5.9 | 0.04 | 43.8 | 17.7 | |
250℃、15min常压烘焙 | 82.5 | 17.0 | 0.5 | 53.3 | 6.0 | 0.03 | 40.6 | 19.4 | ||
250℃、2.5MPa N2、15min气压烘焙 | 62.1 | 37.1 | 0.8 | 65.4 | 5.5 | 0.09 | 29.1 | 24.7 | ||
松木2 | 80.6 | 16.9 | 2.5 | 47.9 | 5.6 | 0.2 | 46.3 | 16.9 | ||
250℃、60min常压烘焙 | 75.0 | 21.0 | 3.1 | 51.9 | 5.5 | 0.2 | 42.4 | 18.7 | ||
250℃、1.8MPa、60min气压烘焙 | 43.0 | 53.6 | 3.4 | 71.3 | 4.7 | 0.3 | 23.7 | 27.0 | ||
银合欢[ | 87.3 | 12.2 | 0.5 | 50.1 | 7.4 | 0.7 | 41.8 | 20.4 | ||
250℃、30min常压烘焙 | 81.6 | 17.3 | 1.1 | 54.0 | 6.4 | 0.7 | 38.9 | 21.9 | ||
250℃、4.0MPa、30min气压烘焙 | 60.0 | 38.2 | 1.8 | 62.3 | 5.6 | 1.0 | 31.1 | 25.8 | ||
杨木[ | 84.0 | 15.1 | 0.9 | 49.2 | 5.5 | 0.8 | 43.5 | 19.5 | ||
250℃、30min常压烘焙 | 82.9 | 15.6 | 1.5 | 49.8 | 5.7 | 0.8 | 43.7 | 19.8 | ||
250℃、2.5MPa N2、30min气压烘焙 | 71.2 | 26.9 | 1.8 | 58.4 | 5.6 | 0.5 | 35.4 | 23.5 |
种类 | 样品 | 烘焙条件 | 工业分析(d.b.)/% | 元素分析(d.a.f.)/% | 高位热值(d.a.f.) /MJ·kg-1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
挥发分 | 固定碳 | 灰分 | C | H | N | O | ||||
农业生物质 | 稻秆1[ | 75.2 | 15.2 | 9.6 | 48.9 | 5.2 | 0.9 | 45.0 | 15.9 | |
250℃、15min常压烘焙 | 68.8 | 19.9 | 11.3 | 50.8 | 5.6 | 1.0 | 42.7 | 17.5 | ||
250℃、2.5MPa、15min气压烘焙 | 40.8 | 40.5 | 18.7 | 68.4 | 5.2 | 1.5 | 24.9 | 26.2 | ||
稻秆2[ | 75.2 | 15.1 | 9.7 | 45.8 | 6.0 | 1.1 | 47.1 | 15.7 | ||
250℃、60min常压烘焙 | 72.1 | 15.9 | 12.1 | 53.2 | 6.0 | 1.3 | 39.5 | 19.7 | ||
250℃、1.8MPa、60min气压烘焙 | 45.9 | 36.0 | 18.2 | 70.8 | 5.5 | 1.9 | 21.8 | 28.0 | ||
玉米秸秆[ | 72.7 | 19.6 | 7.7 | 43.7 | 5.3 | 2.8 | 48.2 | 17.6 | ||
250℃、30min常压烘焙 | 66.6 | 22.3 | 11.1 | 45.4 | 4.9 | 2.3 | 47.4 | 18.2 | ||
250℃、2.5MPa N2、30min气压烘焙 | 49.5 | 35.7 | 14.8 | 56.7 | 4.5 | 2.5 | 36.3 | 22.2 | ||
芦苇[ | 70.0 | 18.1 | 11.9 | 44.5 | 5.7 | 1.7 | 48.1 | 14.6 | ||
270℃、30min常压烘焙 | 35.3 | 47.0 | 17.7 | 51.4 | 5.1 | 2.1 | 41.4 | 17.3 | ||
270℃、2.5MPa N2、30min气压烘焙 | 30.9 | 43.4 | 25.7 | 59.6 | 4.0 | 3.0 | 33.4 | 19.9 | ||
林业生物质 | 松木1[ | 85.5 | 14.1 | 0.4 | 50.3 | 5.9 | 0.04 | 43.8 | 17.7 | |
250℃、15min常压烘焙 | 82.5 | 17.0 | 0.5 | 53.3 | 6.0 | 0.03 | 40.6 | 19.4 | ||
250℃、2.5MPa N2、15min气压烘焙 | 62.1 | 37.1 | 0.8 | 65.4 | 5.5 | 0.09 | 29.1 | 24.7 | ||
松木2 | 80.6 | 16.9 | 2.5 | 47.9 | 5.6 | 0.2 | 46.3 | 16.9 | ||
250℃、60min常压烘焙 | 75.0 | 21.0 | 3.1 | 51.9 | 5.5 | 0.2 | 42.4 | 18.7 | ||
250℃、1.8MPa、60min气压烘焙 | 43.0 | 53.6 | 3.4 | 71.3 | 4.7 | 0.3 | 23.7 | 27.0 | ||
银合欢[ | 87.3 | 12.2 | 0.5 | 50.1 | 7.4 | 0.7 | 41.8 | 20.4 | ||
250℃、30min常压烘焙 | 81.6 | 17.3 | 1.1 | 54.0 | 6.4 | 0.7 | 38.9 | 21.9 | ||
250℃、4.0MPa、30min气压烘焙 | 60.0 | 38.2 | 1.8 | 62.3 | 5.6 | 1.0 | 31.1 | 25.8 | ||
杨木[ | 84.0 | 15.1 | 0.9 | 49.2 | 5.5 | 0.8 | 43.5 | 19.5 | ||
250℃、30min常压烘焙 | 82.9 | 15.6 | 1.5 | 49.8 | 5.7 | 0.8 | 43.7 | 19.8 | ||
250℃、2.5MPa N2、30min气压烘焙 | 71.2 | 26.9 | 1.8 | 58.4 | 5.6 | 0.5 | 35.4 | 23.5 |
样品 | 工业分析(d.b.)/% | 元素分析(d.a.f.)/% | 高位热值(d.a.f.) /MJ·kg-1 | |||||
---|---|---|---|---|---|---|---|---|
挥发分 | 固定碳(diff.) | 灰分 | C | H | N | O(diff.) | ||
稻秆 | 75.2 | 15.2 | 9.6 | 48.9 | 5.2 | 0.9 | 45.0 | 15.9 |
AP-200 | 74.3 | 15.5 | 10.2 | 47.5 | 6.0 | 0.9 | 45.6 | 16.5 |
AP-250 | 68.8 | 19.9 | 11.3 | 50.8 | 5.6 | 1.0 | 42.7 | 17.5 |
AP-300 | 43.0 | 35.5 | 21.5 | 65.3 | 5.0 | 1.3 | 28.4 | 24.1 |
GP-200 | 49.8 | 33.8 | 16.4 | 61.0 | 5.6 | 1.3 | 32.1 | 22.8 |
GP-250 | 40.8 | 40.5 | 18.7 | 68.4 | 5.2 | 1.5 | 24.9 | 26.2 |
GP-300 | 30.6 | 47.5 | 21.9 | 73.2 | 5.1 | 1.6 | 20.0 | 28.6 |
褐煤 | 45.3 | 34.2 | 20.5 | 65.3 | 4.9 | 1.1 | 28.7 | 24.0 |
次烟煤 | 33.2 | 44.3 | 22.5 | 74.9 | 5.7 | 1.5 | 17.9 | 31.7 |
样品 | 工业分析(d.b.)/% | 元素分析(d.a.f.)/% | 高位热值(d.a.f.) /MJ·kg-1 | |||||
---|---|---|---|---|---|---|---|---|
挥发分 | 固定碳(diff.) | 灰分 | C | H | N | O(diff.) | ||
稻秆 | 75.2 | 15.2 | 9.6 | 48.9 | 5.2 | 0.9 | 45.0 | 15.9 |
AP-200 | 74.3 | 15.5 | 10.2 | 47.5 | 6.0 | 0.9 | 45.6 | 16.5 |
AP-250 | 68.8 | 19.9 | 11.3 | 50.8 | 5.6 | 1.0 | 42.7 | 17.5 |
AP-300 | 43.0 | 35.5 | 21.5 | 65.3 | 5.0 | 1.3 | 28.4 | 24.1 |
GP-200 | 49.8 | 33.8 | 16.4 | 61.0 | 5.6 | 1.3 | 32.1 | 22.8 |
GP-250 | 40.8 | 40.5 | 18.7 | 68.4 | 5.2 | 1.5 | 24.9 | 26.2 |
GP-300 | 30.6 | 47.5 | 21.9 | 73.2 | 5.1 | 1.6 | 20.0 | 28.6 |
褐煤 | 45.3 | 34.2 | 20.5 | 65.3 | 4.9 | 1.1 | 28.7 | 24.0 |
次烟煤 | 33.2 | 44.3 | 22.5 | 74.9 | 5.7 | 1.5 | 17.9 | 31.7 |
样品 | 体积密度(d.b.)/kg·m-3 | 能量密度(d.b.)/MJ·m-3 | 可磨性粒径的中位数/nm | 平衡吸水率/% |
---|---|---|---|---|
稻秆原样 | 165 | 2163 | 88850 | 13.96 |
常压烘焙半焦① | 144 | 2010 | 416.1 | 9.42 |
气压烘焙半焦② | 180 | 3309 | 28.25 | 7.52 |
褐煤 | 560~600 | 10600~11400 | 20000~60000 | 21.50 |
样品 | 体积密度(d.b.)/kg·m-3 | 能量密度(d.b.)/MJ·m-3 | 可磨性粒径的中位数/nm | 平衡吸水率/% |
---|---|---|---|---|
稻秆原样 | 165 | 2163 | 88850 | 13.96 |
常压烘焙半焦① | 144 | 2010 | 416.1 | 9.42 |
气压烘焙半焦② | 180 | 3309 | 28.25 | 7.52 |
褐煤 | 560~600 | 10600~11400 | 20000~60000 | 21.50 |
样品 | 着火点 /℃ | 燃尽温度 /℃ | 最大失重温度 /℃ | 最大失重速率 /%·min-1 |
---|---|---|---|---|
稻秆原样 | 250 | 500 | 285 | 8.6 |
常压烘焙半焦① | 271 | 522 | 294 | 10.2 |
气压烘焙半焦② | 297 | 511 | 382 | 6.6 |
次烟煤 | 317 | 549 | 406 | 35.3 |
样品 | 着火点 /℃ | 燃尽温度 /℃ | 最大失重温度 /℃ | 最大失重速率 /%·min-1 |
---|---|---|---|---|
稻秆原样 | 250 | 500 | 285 | 8.6 |
常压烘焙半焦① | 271 | 522 | 294 | 10.2 |
气压烘焙半焦② | 297 | 511 | 382 | 6.6 |
次烟煤 | 317 | 549 | 406 | 35.3 |
样品 | 元素分析/% | 高位热值 /MJ·kg-1 | |||
---|---|---|---|---|---|
C | H | N | O | ||
稻秆 | |||||
原样-热解生物油 | 34.0 | 8.7 | 0.8 | 56.5 | 13.9 |
常压烘焙-热解生物油 | 36.5 | 8.0 | 1.1 | 54.4 | 14.1 |
气压烘焙-热解生物油 | 59.6 | 4.0 | 1.4 | 31.1 | 20.3 |
木屑 | |||||
原样-热解生物油 | 36.3 | 8.4 | 0.1 | 55.2 | 14.4 |
常压烘焙-热解生物油 | 42.0 | 7.8 | 0.6 | 49.6 | 16.5 |
气压烘焙-热解生物油 | 53.8 | 7.4 | 0.1 | 38.7 | 21.9 |
样品 | 元素分析/% | 高位热值 /MJ·kg-1 | |||
---|---|---|---|---|---|
C | H | N | O | ||
稻秆 | |||||
原样-热解生物油 | 34.0 | 8.7 | 0.8 | 56.5 | 13.9 |
常压烘焙-热解生物油 | 36.5 | 8.0 | 1.1 | 54.4 | 14.1 |
气压烘焙-热解生物油 | 59.6 | 4.0 | 1.4 | 31.1 | 20.3 |
木屑 | |||||
原样-热解生物油 | 36.3 | 8.4 | 0.1 | 55.2 | 14.4 |
常压烘焙-热解生物油 | 42.0 | 7.8 | 0.6 | 49.6 | 16.5 |
气压烘焙-热解生物油 | 53.8 | 7.4 | 0.1 | 38.7 | 21.9 |
10 | CHEN Wei-Hsin, PENG Jianghong, BI Xiaotao T. A state-of-the-art review of biomass torrefaction, densification and applications[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 847-866. |
11 | ONYENWOKE Chukwuka, TABIL Lope G, MUPONDWA Edmund, et al. Effect of torrefaction on the physiochemical properties of white spruce sawdust for biofuel production[J]. Fuels, 2023, 4(1): 111-131. |
12 | 王贤华, 鞠付栋, 杨海平, 等. 神府煤加压热解特性及热解动力学分析[J]. 中国电机工程学报, 2011, 31(11): 40-44. |
WANG Xianhua, JU Fudong, YANG Haiping, et al. Kinetics and properties analysis of Shenfu coal pressurized pyrolysis[J]. Proceedings of the CSEE, 2011, 31(11): 40-44. | |
13 | 邓立华, 孙绍增, 张文达, 等. 压力对煤热解过程及热解焦炭理化结构的影响[J]. 燃烧科学与技术, 2021, 27(6): 644-652. |
DENG Lihua, SUN Shaozeng, ZHANG Wenda, et al. Effects of pressure on coal pyrolysis process and physicochemical structure of pyrolysis char[J]. Journal of Combustion Science and Technology, 2021, 27(6): 644-652. | |
14 | 杨允明, 李永华, 沙兴中, 等. 煤在固定床反应器中加压热解成气过程[J]. 燃料化学学报, 1987, 15(2): 176-180. |
YANG Yunming, LI Yonghua, SHA Xingzhong, et al. Study of coal pyrolysis under pressure in fixed-bed reactor[J]. Journal of Fuel Chemistry and Technology, 1987, 15(2): 176-180. | |
15 | YANG Haiping, CHEN Hanping, JU Fudong, et al. Influence of pressure on coal pyrolysis and char gasification[J]. Energy & Fuels, 2007, 21(6): 3165-3170. |
16 | YU Jianglong, LUCAS John A, WALL Terry F. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: A review[J]. Progress in Energy and Combustion Science, 2007, 33(2): 135-170. |
17 | BASILE Lucia, TUGNOLI Alessandro, STRAMIGIOLI Carlo, et al. Influence of pressure on the heat of biomass pyrolysis[J]. Fuel, 2014, 137: 277-284. |
18 | QIN Liyuan, WU Yang, HOU Zhiwei, et al. Influence of biomass components, temperature and pressure on the pyrolysis behavior and biochar properties of pine nut shells[J]. Bioresource Technology, 2020, 313: 123682. |
19 | NHUCHHEN Daya Ram, BASU Prabir. Experimental investigation of mildly pressurized torrefaction in air and nitrogen[J]. Energy & Fuels, 2014, 28(5): 3110-3121. |
20 | AGAR David, DEMARTINI Nikolai, HUPA Mikko. Influence of elevated pressure on the torrefaction of wood[J]. Energy & Fuels, 2016, 30(3): 2127-2136. |
21 | WANNAPEERA Janewit, WORASUWANNARAK Nakorn. Upgrading of woody biomass by torrefaction under pressure[J]. Journal of Analytical and Applied Pyrolysis, 2012, 96: 173-180. |
22 | TONG Shan, XIAO Li, LI Xian, et al. A gas-pressurized torrefaction method for biomass wastes[J]. Energy Conversion and Management, 2018, 173: 29-36. |
23 | DI BLASI Colomba, BRANCA Carmen. Kinetics of primary product formation from wood pyrolysis[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5547-5556. |
24 | CARRASCO Juan C, OPORTO Gloria S, ZONDLO John, et al. Torrefaction kinetics of red oak (quercus rubra) in a fluidized reactor[J]. BioResources, 2013, 8(4): 5067-5082. |
25 | DI BLASI Colomba, LANZETTA Mario. Intrinsic kinetics of isothermal xylan degradation in inert atmosphere[J]. Journal of Analytical and Applied Pyrolysis, 1997, 40/41: 287-303. |
26 | FISHER Travis, HAJALIGOL Mohammad, WAYMACK Bruce, et al. Pyrolysis behavior and kinetics of biomass derived materials[J]. Journal of Analytical and Applied Pyrolysis, 2002, 62(2): 331-349. |
27 | SHEN D K, GU S, BRIDGWATER A V. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 199-206. |
28 | SHI Liu, HU Zhenzhong, LI Xian, et al. Gas-pressurized torrefaction of lignocellulosic solid wastes: Low-temperature deoxygenation and chemical structure evolution mechanisms[J]. Bioresource Technology, 2023, 385: 129414. |
29 | SUN Yiming, TONG Shan, LI Xian, et al. Gas-pressurized torrefaction of biomass wastes: Self-promoted deoxygenation of rice straw at low temperature[J]. Fuel, 2022, 308: 122029. |
30 | DACRES Omar D, TONG Shan, LI Xian, et al. Pyrolysis kinetics of biomasses pretreated by gas-pressurized torrefaction[J]. Energy Conversion and Management, 2019, 182: 117-125. |
31 | SUN Yiming, TONG Shan, LI Xian, et al. Gas-pressurized torrefaction of biomass wastes: The optimization of pressurization condition and the pyrolysis of torrefied biomass[J]. Bioresource Technology, 2021, 319: 124216. |
32 | DACRES Omar D, TONG Shan, LI Xian, et al. Gas-pressurized torrefaction of biomass wastes: The effect of varied pressure on pyrolysis kinetics and mechanism of torrefied biomass[J]. Fuel, 2020, 276: 118132. |
33 | MIAN Inamullah, LI Xian, JIAN Yiming, et al. Kinetic study of biomass pellet pyrolysis by using distributed activation energy model and Coats Redfern methods and their comparison[J]. Bioresource Technology, 2019, 294: 122099. |
34 | MIAN Inamullah, LI Xian, DACRES Omar D, et al. Combustion kinetics and mechanism of biomass pellet[J]. Energy, 2020, 205: 117909. |
35 | TONG Shan, SUN Yiming, LI Xian, et al. Gas-pressurized torrefaction of biomass wastes: Roles of pressure and secondary reactions[J]. Bioresource Technology, 2020, 313: 123640. |
36 | XIAO Li, ZHU Xianqing, LI Xian, et al. Effect of pressurized torrefaction pretreatments on biomass CO2 gasification[J]. Energy & Fuels, 2015, 29(11): 7309-7316. |
37 | 郭得忠. 生物质加压烘焙提质研究[D]. 北京: 华北电力大学, 2021. |
GUO Dezhong. Research on upgrading biomass fuels via pressurized torrefaction[D].Beijing: North China Electric Power University, 2021. | |
38 | HUANG Zhongliang, JIANG Shilin, GUO Junyuan, et al. Oxidative torrefaction of Phragmites australis: Gas-pressurized effects and correlation analysis based on color value[J]. Energy & Fuels, 2020, 34(9): 11073-11082. |
39 | 肖黎. 加压烘焙预处理对生物质气化特性的影响[D]. 武汉: 华中科技大学, 2016. |
XIAO Li. Influence of pressurized torrefaction pretreatments on gasification characteristics of biomass[D].Wuhan: Huazhong University of Science and Technology, 2016. | |
40 | CHEN Wei-Hsin, LU Kemiao, TSAI Chi-Ming. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction[J]. Applied Energy, 2012, 100: 318-325. |
41 | 侯康, 武建军, 尚晓玲, 等. 热重法研究逐级脱矿对褐煤燃烧特性的影响[J]. 化工进展, 2017, 36(3): 900-908. |
HOU Kang, WU Jianjun, SHANG Xiaoling, et al. Experimental study on effects of stepwise removal ofminerals on the combustion characteristics of lignites by TG/DTG[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 900-908. | |
42 | 王越, 马亚亚, 莫文龙, 等. 和丰次烟煤逐级萃取物和萃余物官能团组成FT-IR分析[J]. 燃料化学学报, 2021, 49(7): 890-901. |
WANG Yue, MA Yaya, MO Wenlong, et al. Functional groups of sequential extracts and corresponding residues from Hefeng sub-bituminous coal based on FT-IR analysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 890-901. | |
43 | 童珊. 农林废弃物的气压烘焙机理及产物的热转化行为研究[D]. 武汉: 华中科技大学, 2021. |
TONG Shan. Mechanism study of gas-pressurized torrefaction of agriculture and forestry waste and the thermal conversion behavior of the product[D].Wuhan: Huazhong University of Science and Technology, 2021. | |
44 | FANG Zhen, SATO Takafumi, SMITH Richard L, et al. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water[J]. Bioresource Technology, 2008, 99(9): 3424-3430. |
45 | SHI Liu, SUN Yiming, LI Xian, et al. Gas-pressurized torrefaction of lignocellulosic solid wastes: Deoxygenation and aromatization mechanisms of cellulose[J]. Molecules, 2023, 28(22): 7671. |
46 | 孙一鸣. 生物质气压烘焙脱氧机制及燃料特性研究[D]. 武汉: 华中科技大学, 2021. |
SUN Yiming. Study of deoxygenation mechanism of gas-pressurized torrefaction and fuel properties of torrefied biomass[D].Wuhan: Huazhong University of Science and Technology, 2021. | |
47 | TAN Mengjiao, LI Hui, HUANG Zhongliang, et al. Comparison of atmospheric and gas-pressurized oxidative torrefaction of heavy-metal-polluted rice straw[J]. Journal of Cleaner Production, 2021, 283: 124636. |
48 | GAO Pan, ZHAO Zeheng, LIU Yutong, et al. Effect of gas-pressurized torrefaction on the upgrading and pyrolysis characteristics of corn stalk[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 735-747. |
49 | TONG Shan, SUN Yiming, LI Xian, et al. Gas-pressurized torrefaction of biomass wastes: Co-gasification of gas-pressurized torrefied biomass with coal[J]. Bioresource Technology, 2021, 321: 124505. |
50 | 李显, 孙一鸣, 童珊, 等. 一种生物质废弃物气压烘焙系统: CN214004523U[P]. 2021-08-20. |
LI Xian, SUN Yiming, TONG Shan, et al. Biomass waste gas-pressurized torrefaction system: CN214004523U[P]. 2021-08-20. | |
1 | CIOLKOSZ Daniel, WALLACE Robert. A review of torrefaction for bioenergy feedstock production[J]. Biofuels, Bioproducts and Biorefining, 2011, 5(3): 317-329. |
2 | NEGI Sushant, JASWAL Gaurav, DASS Kali, et al. Torrefaction: A sustainable method for transforming of agri-wastes to high energy density solids (biocoal)[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(2): 463-488. |
3 | NIU Yanqing, Yuan LYU, LEI Yu, et al. Biomass torrefaction: Properties, applications, challenges, and economy[J]. Renewable and Sustainable Energy Reviews, 2019, 115: 109395. |
4 | 朱波, 王贤华, 陈应泉, 等. 农业秸秆烘焙特性实验[J]. 化工进展, 2010, 29(S1): 120-125. |
ZHU Bo, WANG Xianhua, CHEN Yingquan, et al. Experiment on torrefaction characteristics of agricultural straw[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 120-125. | |
5 | 郝宏蒙, 杨海平, 刘汝杰, 等. 烘培对典型农业秸秆吸水性能的影响[J]. 中国电机工程学报, 2013, 33(8): 90-94. |
HAO Hongmeng, YANG Haiping, LIU Rujie, et al. Influence of torrefaction on typical agricultural straw hydrophilic property[J]. Proceedings of the CSEE, 2013, 33(8): 90-94. | |
6 | 凌云逸, 孙锲, RONALD Wennersten. 生物质原料烘焙预处理研究[J]. 能源与环境, 2015(4): 85-87. |
LING Yunyi, SUN Qie, RONALD Wennersten. Study on torrefaction pretreatment of biomass raw materials[J]. Energy and Environment, 2015(4): 85-87. | |
7 | M-U GARBA, S-U GAMBO, MUSA U, et al. Impact of torrefaction on fuel property of tropical biomass feedstocks[J]. Biofuels, 2018, 9(3): 369-377. |
8 | MANATURA Kanit. Inert torrefaction of sugarcane bagasse to improve its fuel properties[J]. Case Studies in Thermal Engineering, 2020, 19: 100623. |
9 | WANG L, BARTA-RAJNAI E, SKREIBERG Ø, et al. Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark[J]. Applied Energy, 2018, 227: 137-148. |
51 | 李显, 石瑬, 孙一鸣, 等. 一种生物质热量自平衡气压烘焙系统: CN218842057U[P]. 2023-04-11. |
LI Xian, SHI Liu, SUN Yiming, et al. Biomass heat self-balancing gas-pressurized torrefaction system: CN218842057U[P]. 2023-04-11. | |
52 | 易琳琳, 付嘉, 李开源, 等. 一种基于气压烘焙的高氯固废处理方法及装置: CN116689463A[P]. 2023-09-05. |
YI Linlin, FU Jia, LI Kaiyuan, et al. High-chlorine solid waste treatment method and device based on gas-pressurized torrefaction: CN116689463A[P]. 2023-09-05. | |
53 | LI Miao, WANG Hou, HUANG Zhongliang, et al. Comparison of atmospheric pressure and gas-pressurized torrefaction of municipal sewage sludge: Properties of solid products[J]. Energy Conversion and Management, 2020, 213: 112793. |
54 | 李淼. 市政污泥的烘焙预处理及固体产物的热转化研究[D]. 长沙: 湖南大学, 2021. |
LI Miao. Study on torrefaction pretreatment of municipal sludge and thermochemical conversion of solid products[D]. Changsha: Central South University of Forestry and Technology, 2021. |
[1] | HAN Wei, HAN Hengwen, CHENG Wei, TANG Weijian. Research progress of biomass fuels technology driven by carbon neutrality [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2463-2474. |
[2] | HUANG Kun, XU Ming, WU Xiujuan, PEI Sijia, LIU Dawei, MA Xiaoxun, XU Long. Research progress on preparation and microstructural characteristics regulation of biomass activated carbon [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2475-2493. |
[3] | DU Yongliang, LIANG Zhuobin, GONG Yaoxu, BI Haojie, XU Zhiyuan, YUAN Hongying. Air gap membrane distillation research status and applications [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1655-1666. |
[4] | ZHANG Shuming, LIU Huazhang. Optimization of Fe1-x O ammonia synthesis catalyst by BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1302-1308. |
[5] | WU Fengming, LI Shuaiqi, HE Shihui, SONG Wenji, FENG Ziping. Research progress on optimization of large temperature-lift vapor compression heat pump system [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1178-1198. |
[6] | SU Qian, DENG Xiangtian, LIU Zhenxing. Model optimization of phase fraction in oil-gas-water three-phase flow using ultrasonic testing technique [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 791-799. |
[7] | SHAN Liang, HUA Xiajie, NIU Yufeng, ZHAO Tengfei, HONG Bo, KONG Ming. Optimization method for light-field feature extraction in flame temperature field reconstruction [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 823-829. |
[8] | WANG Xiong, YANG Zhenning, LI Yue, SHEN Weifeng. Optimization of methanol distillation process based on chemical mechanism and industrial digital twinning modeling [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 310-319. |
[9] | WANG Jinghan, LYU Jie, ZHAO Ding, LIN Wenye, SONG Wenji, FENG Ziping. BP neural network approach for heat generation rate estimation of power battery for electric vehicles [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 400-406. |
[10] | YANG Mengru, PENG Qin, CHANG Yulong, QIU Shuxing, ZHANG Jianbo, JIANG Xia. Research progress of carbon emission reduction technology with biochar replacing pulverized coal/coke for blast furnace ironmaking [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 490-500. |
[11] | WANG Bo, ZHANG Chang’an, ZHAO Limin, YUAN Jun, SONG Yongyi. Industrial wastewater treatment technology based on boron-doped diamond electrodes:A review [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 501-513. |
[12] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[13] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[14] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[15] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |