Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (4): 2031-2048.DOI: 10.16085/j.issn.1000-6613.2023-0606
• Resources and environmental engineering • Previous Articles
LIAO Changjian1(), ZHANG Kewei2, WANG Jing1, ZENG Xiangyu1, JIN Ping1, LIU Zhiyu1
Received:
2023-04-14
Revised:
2023-06-16
Online:
2024-05-13
Published:
2024-04-15
Contact:
LIAO Changjian
廖昌建1(), 张可伟2, 王晶1, 曾翔宇1, 金平1, 刘志禹1
通讯作者:
廖昌建
作者简介:
廖昌建(1984—),男,硕士,研究员,研究方向为碳捕集技术开发。E-mail:liaochangjian.fshy@sinopec.com。
基金资助:
CLC Number:
LIAO Changjian, ZHANG Kewei, WANG Jing, ZENG Xiangyu, JIN Ping, LIU Zhiyu. Progress on direct air capture of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2031-2048.
廖昌建, 张可伟, 王晶, 曾翔宇, 金平, 刘志禹. 直接空气捕集二氧化碳技术研究进展[J]. 化工进展, 2024, 43(4): 2031-2048.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0606
所属公司 | 地点 | CO2储存或利用 | 起始时间 /年 | CO2捕集量/t∙a-1 |
---|---|---|---|---|
Global Thermostat | 美国 | 未知 | 2010 | 500 |
Global Thermostat | 美国 | 未知 | 2013 | 1000 |
Climeworks | 德国 | 利用 | 2015 | 1 |
Carbon Engineering | 加拿大 | 利用 | 2015 | 365 |
Climeworks | 瑞士 | 利用 | 2016 | 50 |
Climeworks | 瑞士 | 利用 | 2017 | 900 |
Climeworks | 冰岛 | 储存 | 2017 | 50 |
Climeworks | 瑞士 | 利用 | 2018 | 600 |
Climeworks | 瑞士 | 利用 | 2018 | 3 |
Climeworks | 意大利 | 利用 | 2018 | 150 |
Climeworks | 德国 | 利用 | 2019 | 3 |
Climeworks | 荷兰 | 利用 | 2019 | 3 |
Climeworks | 德国 | 利用 | 2019 | 3 |
Climeworks | 德国 | 利用 | 2019 | 50 |
Climeworks | 德国 | 利用 | 2020 | 50 |
Climeworks | 德国 | 利用 | 2020 | 3 |
Climeworks | 德国 | 利用 | 2020 | 3 |
Climeworks | 冰岛 | 储存 | 2021 | 4000 |
所属公司 | 地点 | CO2储存或利用 | 起始时间 /年 | CO2捕集量/t∙a-1 |
---|---|---|---|---|
Global Thermostat | 美国 | 未知 | 2010 | 500 |
Global Thermostat | 美国 | 未知 | 2013 | 1000 |
Climeworks | 德国 | 利用 | 2015 | 1 |
Carbon Engineering | 加拿大 | 利用 | 2015 | 365 |
Climeworks | 瑞士 | 利用 | 2016 | 50 |
Climeworks | 瑞士 | 利用 | 2017 | 900 |
Climeworks | 冰岛 | 储存 | 2017 | 50 |
Climeworks | 瑞士 | 利用 | 2018 | 600 |
Climeworks | 瑞士 | 利用 | 2018 | 3 |
Climeworks | 意大利 | 利用 | 2018 | 150 |
Climeworks | 德国 | 利用 | 2019 | 3 |
Climeworks | 荷兰 | 利用 | 2019 | 3 |
Climeworks | 德国 | 利用 | 2019 | 3 |
Climeworks | 德国 | 利用 | 2019 | 50 |
Climeworks | 德国 | 利用 | 2020 | 50 |
Climeworks | 德国 | 利用 | 2020 | 3 |
Climeworks | 德国 | 利用 | 2020 | 3 |
Climeworks | 冰岛 | 储存 | 2021 | 4000 |
载体 | 胺基 | 实验环境 | 最大吸附容量 /mmol∙g-1 | 吸附-脱附 循环条件 | 循环吸附量 /mmol∙g-1 | 参考文献 |
---|---|---|---|---|---|---|
SBA-15 | TEPA(质量分数50%) | 400μg/g CO2 | 2.30(600min) | 吸附25℃, 60min; 脱附110℃, 15min | 1.72~1.66(10次循环) | [ |
大孔硅 | PA(10.98mmol /g) | 400μg/g CO2 | 2.65 | 10%CO2:吸附50℃,40min; 脱附110℃,10min | 3.86~3.78(120次循环) | [ |
介孔炭 | PEI(质量分数55%) | 400μg/g CO2 | 2.25(720min) | 吸附25℃;脱附110℃,45min | 2.25~2.18(10次循环) | [ |
多壁碳纳米管(NWCN) | PEI(质量分数20%乙醇) | 350μg/g CO2 | 2.12(720min) | 吸附30℃,10min;脱附90℃,20min | 1.07~0.96(10次循环) | [ |
纳米纤维(NFC) | AEAPDMS (4.9mmol/g) | 506μg/g CO2, RH40% | 1.39(720min) | 吸附25℃,120min; 脱附90℃,60min | 平均0.695(20次循环) | [ |
Mg0.55Al-CO3LDHs | TEPA(质量分数67%) | 400μg/g CO2 | 3.0(180min) | 吸附25℃,100min; 脱附100℃,10min | 1.31~1.19(80次循环) | [ |
Mg0.55Al-CO3LDHs | TEPA(质量分数67%) | 400μg/g CO2 | 3.0(180min) | 吸附25℃, 180min; 脱附100℃,15min | 2.55~2.31(20次循环) | [ |
Mg0.55Al-CO3LDHs | TRI(6.399mmol∙g-1) | 400μg/g CO2 | 1.05(120min) | 吸附25℃, 60min; 脱附120℃,15min | 0.912(50次循环) | [ |
层状SiO2 | TEPA(质量分数70%) | 400μg/g CO2 | 5.2(700min) | 吸附30℃,25min; 脱附110℃,30min | 4.5~3.5(10次循环) | [ |
Mg2(dobdc) | N2H4(6.01mmol∙g-1) | 400μg/g CO2 | 3.89 | 15%CO2:吸附40℃,40min; 脱附130℃ | 3.86(5次循环) | [ |
聚丙烯腈(PAN) 中空纤维 | TEPA(质量分数30.1%) | 470μg/g CO2, RH25% | 2.15(440min) | 吸附25℃;脱附100℃ | 2.03(20次循环) | [ |
载体 | 胺基 | 实验环境 | 最大吸附容量 /mmol∙g-1 | 吸附-脱附 循环条件 | 循环吸附量 /mmol∙g-1 | 参考文献 |
---|---|---|---|---|---|---|
SBA-15 | TEPA(质量分数50%) | 400μg/g CO2 | 2.30(600min) | 吸附25℃, 60min; 脱附110℃, 15min | 1.72~1.66(10次循环) | [ |
大孔硅 | PA(10.98mmol /g) | 400μg/g CO2 | 2.65 | 10%CO2:吸附50℃,40min; 脱附110℃,10min | 3.86~3.78(120次循环) | [ |
介孔炭 | PEI(质量分数55%) | 400μg/g CO2 | 2.25(720min) | 吸附25℃;脱附110℃,45min | 2.25~2.18(10次循环) | [ |
多壁碳纳米管(NWCN) | PEI(质量分数20%乙醇) | 350μg/g CO2 | 2.12(720min) | 吸附30℃,10min;脱附90℃,20min | 1.07~0.96(10次循环) | [ |
纳米纤维(NFC) | AEAPDMS (4.9mmol/g) | 506μg/g CO2, RH40% | 1.39(720min) | 吸附25℃,120min; 脱附90℃,60min | 平均0.695(20次循环) | [ |
Mg0.55Al-CO3LDHs | TEPA(质量分数67%) | 400μg/g CO2 | 3.0(180min) | 吸附25℃,100min; 脱附100℃,10min | 1.31~1.19(80次循环) | [ |
Mg0.55Al-CO3LDHs | TEPA(质量分数67%) | 400μg/g CO2 | 3.0(180min) | 吸附25℃, 180min; 脱附100℃,15min | 2.55~2.31(20次循环) | [ |
Mg0.55Al-CO3LDHs | TRI(6.399mmol∙g-1) | 400μg/g CO2 | 1.05(120min) | 吸附25℃, 60min; 脱附120℃,15min | 0.912(50次循环) | [ |
层状SiO2 | TEPA(质量分数70%) | 400μg/g CO2 | 5.2(700min) | 吸附30℃,25min; 脱附110℃,30min | 4.5~3.5(10次循环) | [ |
Mg2(dobdc) | N2H4(6.01mmol∙g-1) | 400μg/g CO2 | 3.89 | 15%CO2:吸附40℃,40min; 脱附130℃ | 3.86(5次循环) | [ |
聚丙烯腈(PAN) 中空纤维 | TEPA(质量分数30.1%) | 470μg/g CO2, RH25% | 2.15(440min) | 吸附25℃;脱附100℃ | 2.03(20次循环) | [ |
技术名称 | 优点 | 缺点 |
---|---|---|
碱性氢氧化物溶液DAC技术 | 技术成熟,吸收速率高 | 再生温度高、再生能耗高,损失大量水分 |
胺溶液DAC技术 | 吸收速率较高 | 伴随胺液挥发且再生效率较低 |
氨基酸盐溶液/BIGs DAC技术 | 吸收速率高,再生温度较低,溶剂损失少 | 能耗较高,捕集效果因BIGs 而异 |
碱度浓度变化DAC技术 | 吸收速率较高,再生温度与能耗较低,可与海水淡化研究合作 | 捕集效果与溶液浓缩技术相关联,用水量大 |
固体碱(土)金属DAC技术 | 吸附效率较高,再生稳定性较好 | 再生能耗较高,成本较高 |
固态胺吸附剂DAC技术 | 技术成熟,吸附速率快,再生温度低 | 吸附剂的热稳定性有待进一步提高 |
MOFs材料DAC技术 | 在较低温度下有应用优势 | 捕集效果受环境中水含量影响较大,原材料成本较高 |
变湿吸附DAC技术 | 吸附与解吸速率高,再生温度及再生能耗较低 | 用水量大,对水质要求高,得到的CO2分压较低 |
DACM技术 | 可同时实现CO2捕集与转化,受湿度影响较小 | 再生温度较高,催化剂起决定性作用 |
光诱导摆动吸附DAC技术 | 再生能耗较低 | 需在材料内嵌入光反应因子 |
MI-DAC技术 | 再生能耗较低,可应用于海水 | 捕集效果主要取决于微生物 |
技术名称 | 优点 | 缺点 |
---|---|---|
碱性氢氧化物溶液DAC技术 | 技术成熟,吸收速率高 | 再生温度高、再生能耗高,损失大量水分 |
胺溶液DAC技术 | 吸收速率较高 | 伴随胺液挥发且再生效率较低 |
氨基酸盐溶液/BIGs DAC技术 | 吸收速率高,再生温度较低,溶剂损失少 | 能耗较高,捕集效果因BIGs 而异 |
碱度浓度变化DAC技术 | 吸收速率较高,再生温度与能耗较低,可与海水淡化研究合作 | 捕集效果与溶液浓缩技术相关联,用水量大 |
固体碱(土)金属DAC技术 | 吸附效率较高,再生稳定性较好 | 再生能耗较高,成本较高 |
固态胺吸附剂DAC技术 | 技术成熟,吸附速率快,再生温度低 | 吸附剂的热稳定性有待进一步提高 |
MOFs材料DAC技术 | 在较低温度下有应用优势 | 捕集效果受环境中水含量影响较大,原材料成本较高 |
变湿吸附DAC技术 | 吸附与解吸速率高,再生温度及再生能耗较低 | 用水量大,对水质要求高,得到的CO2分压较低 |
DACM技术 | 可同时实现CO2捕集与转化,受湿度影响较小 | 再生温度较高,催化剂起决定性作用 |
光诱导摆动吸附DAC技术 | 再生能耗较低 | 需在材料内嵌入光反应因子 |
MI-DAC技术 | 再生能耗较低,可应用于海水 | 捕集效果主要取决于微生物 |
捕集能力 | 吸附剂/吸收剂 | 解吸温度/℃ | 能源 | 能耗 | CO2压力/bar | CO2纯度 | 成本/USD·t-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
1Mt/a | KOH | 900 | 天然气 | 8.81GJ/t | 150 | 97.1% | 94~232 | [ |
1Mt/a | KOH | 900 | 天然气+电力 | 5.25GJ/t+366kWh/t | 150 | 97.1% | 94~232 | [ |
1Mt/a | KOH | 900 | 电力 | 1535kWh/t | 1 | >97% | 186 | [ |
0.291t/h | MEA | 123.1 | 电力 | 1452kWh/t | 2 | — | 676 | [ |
0.36Mt/a | K2CO3 | 80~100 | 余热 | 7.5GJ/t+694kWh/t | — | >99% | 135~177 | [ |
3600t/a | K2CO3 | 80~100 | 余热 | 7.5GJ/t+694kWh/t | — | >99% | 203~244 | [ |
— | CaO | 875 | 太阳能 | 240.9 GJ/t | — | — | — | [ |
— | K2CO3/γ-Al2O3 | 150 | 热能+机械能 | 7.3GJ/t+0.27GJ/t | — | — | — | [ |
300t/a | 胺基 | 100 | 余热 | 5.4~7.2GJ/t+200~300Wh/t | — | 99.9% | 预计大规模75 | [ |
— | 氨基聚合物 | 85~95 | 蒸汽 | 4.2~5.1GJ/t+150~260Wh/t | — | >98.5% | <113 | [ |
— | 氨基聚合物 | 75 | 低温蒸汽 | — | — | >98.5% | ≤50 | [ |
140g/d | MOFs | 80,真空 | 余热 | — | — | 70%~80% | 34~350 | [ |
166.08t/h | 变湿吸附剂+胺液 | — | 太阳能 | 306GJ/t | — | 97% | 93.1 | [ |
365t/a | 变湿吸附剂 | 变湿 | 电力 | 316kWh/t | — | — | 99 (预期<30) | [ |
— | 变湿吸附剂 | 45 | 余热 | 0.81GJ/t | — | 3% | 34.68 | [ |
— | 氨基酸盐溶液/m-BBIG | 60~120 | 余热 | 8.2GJ/t | — | — | — | [ |
— | 氨基酸盐溶液/PyBIG | 80~120 | 余热 | 6.5GJ/t | — | — | — | [ |
— | ACS | RO | 电力 | 1011~1200kWh/t | 1 | 99.8% | — | [ |
— | ACS | MCDI | 电力 | 1072~2400kWh/t | 1 | 99.8% | — | [ |
1Mt/a | MI-DAC | pH改变 | 生物能 | — | — | — | 30.54 | [ |
捕集能力 | 吸附剂/吸收剂 | 解吸温度/℃ | 能源 | 能耗 | CO2压力/bar | CO2纯度 | 成本/USD·t-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
1Mt/a | KOH | 900 | 天然气 | 8.81GJ/t | 150 | 97.1% | 94~232 | [ |
1Mt/a | KOH | 900 | 天然气+电力 | 5.25GJ/t+366kWh/t | 150 | 97.1% | 94~232 | [ |
1Mt/a | KOH | 900 | 电力 | 1535kWh/t | 1 | >97% | 186 | [ |
0.291t/h | MEA | 123.1 | 电力 | 1452kWh/t | 2 | — | 676 | [ |
0.36Mt/a | K2CO3 | 80~100 | 余热 | 7.5GJ/t+694kWh/t | — | >99% | 135~177 | [ |
3600t/a | K2CO3 | 80~100 | 余热 | 7.5GJ/t+694kWh/t | — | >99% | 203~244 | [ |
— | CaO | 875 | 太阳能 | 240.9 GJ/t | — | — | — | [ |
— | K2CO3/γ-Al2O3 | 150 | 热能+机械能 | 7.3GJ/t+0.27GJ/t | — | — | — | [ |
300t/a | 胺基 | 100 | 余热 | 5.4~7.2GJ/t+200~300Wh/t | — | 99.9% | 预计大规模75 | [ |
— | 氨基聚合物 | 85~95 | 蒸汽 | 4.2~5.1GJ/t+150~260Wh/t | — | >98.5% | <113 | [ |
— | 氨基聚合物 | 75 | 低温蒸汽 | — | — | >98.5% | ≤50 | [ |
140g/d | MOFs | 80,真空 | 余热 | — | — | 70%~80% | 34~350 | [ |
166.08t/h | 变湿吸附剂+胺液 | — | 太阳能 | 306GJ/t | — | 97% | 93.1 | [ |
365t/a | 变湿吸附剂 | 变湿 | 电力 | 316kWh/t | — | — | 99 (预期<30) | [ |
— | 变湿吸附剂 | 45 | 余热 | 0.81GJ/t | — | 3% | 34.68 | [ |
— | 氨基酸盐溶液/m-BBIG | 60~120 | 余热 | 8.2GJ/t | — | — | — | [ |
— | 氨基酸盐溶液/PyBIG | 80~120 | 余热 | 6.5GJ/t | — | — | — | [ |
— | ACS | RO | 电力 | 1011~1200kWh/t | 1 | 99.8% | — | [ |
— | ACS | MCDI | 电力 | 1072~2400kWh/t | 1 | 99.8% | — | [ |
1Mt/a | MI-DAC | pH改变 | 生物能 | — | — | — | 30.54 | [ |
1 | IPCC. Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[R]. Washington: Cambridge University Press, 2021. |
2 | 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS) 年度报告(2021)―中国CCUS 路径研究[R]. 北京:生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心,2021. |
CAI Bofeng, LI Qi, ZHANG Xian, et al. Carbon dioxide capture, use and storage (CCUS) annual report in China (2021)—CCUS pathways in China[R]. Beijing: Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, The Administrative Center for China’s Agenda 21, 2021. | |
3 | IEA. What would it take to limit the global temperature rise to 1.5℃?[R/OL]. Paris. [2019-11-17]. . |
4 | 《第四次气候变化国家评估报告》编写委员会. 第四次气候变化国家评估报告[M]. 北京: 科学出版社, 2022. |
Committee for the preparation of the Fourth National Assessment Report on Climate Change. The fourth national assessment report on climate change[M]. Beijing: Science Press, 2022. | |
5 | 王鼎, 张杰, 杨伯伦, 等. 直接空气捕集CO2典型工艺分析及技术经济研究进展[J]. 煤炭科学技术,2023, 51(S1): 215-221. |
WANG Ding, ZHANG Jie, YANG Bolun, et al. Research progress of typical process analysis and technoeconomic research on direct air capture of carbon dioxide[J]. Coal Science And Technology, 2023, 51(S1): 215-221. | |
6 | MCQUEEN Noah, GOMES Katherine Vaz, MCCORMICK Colin, et al. A review of direct air capture(DAC): Scaling up commercial technologies and innovating for the future[J]. Progress in Energy, 2021, 3(3): 032001. |
7 | BREYER Christian, FASIHI Mahdi, BAJAMUNDI Cyril, et al. Direct air capture of CO2: A key technology for ambitious climate change mitigation[J]. Joule, 2019, 3(9): 2053-2057. |
8 | LACKNER Klaus, ZIOCK Hans-Joachim, GRIMES Patrick. Carbon dioxide extraction from air: Is it an option?[C]//24th Annual Technical Conference on Coal Utilization & Fuel Systems. Florida: Los Alamos National Laboratory, 1999: 1-12. |
9 | SUTHERLAND Brandon R. Pricing CO2 direct air capture[J]. Joule, 2019, 3(7): 1571-1573. |
10 | 张杰, 郭伟, 张博, 等. 空气中直接捕集CO2技术研究进展[J]. 洁净煤技术, 2021, 27(2): 57-68. |
ZHANG Jie, GUO Wei, ZHANG Bo, et al. Research progress on direct capture of CO2 from air[J]. Clean Coal Technology, 2021, 27(2): 57-68. | |
11 | 北京中研华泰信息技术研究院. 中国CCUS技术发展现状及未来发展前景报告2022—2027年[R]. 中国: 北京中研华泰信息技术研究院, 2022. |
Beijing Zhongyan Huatai Information Technology Research Institute. China CCUS technology development status and future development prospects report 2022—2027[R]. China: Beijing Zhongyan Huatai Information Technology Research Institute, 2022. | |
12 | SODIQ Ahmed, ABDULLATIF Yasser, AISSA Brahim, et al. A review on progress made in direct air capture of CO2 [J]. Environmental Technology & Innovation, 2023, 29: 102991. |
13 | Climeworks. New & press[EB/OL]. . |
14 | Engineering Carbon. New partnership to deploy large-scale direct air capture in Norway[EB/OL]. . |
15 | Engineering Carbon. Engineering of world’s largest direct air capture plant begins[EB/OL]. . |
16 | Engineering Carbon. Occidental, 1PointFive to begin construction of world’s largest direct air capture plant in the Texas Permian Basin[EB/OL]. . |
17 | CHICHILNISKY G. Carbon negative power plants and their impact on environment[EB/OL]. |
18 | Thermostat Global. Solution[EB/OL]. . |
19 | IEA. Direct air capture2022, A key technology for net zero[R]. Paris: IEA, 2022. |
20 | 许世森. 二氧化碳捕集与利用技术研究及工程示范[R]. 中国: 中国华能集团有限公司, 2021. |
XU Shisen. Carbon dioxide capture and utilization technology research and engineering demonstration[R]. China: China Huaneng Group, 2021. | |
21 | 王涛, 董昊, 侯成龙, 等. 直接空气捕集CO2吸附剂综述[J]. 浙江大学学报(工学版), 2022, 56(3): 462-475. |
WANG Tao, DONG Hao, HOU Chenglong, et al. Review of CO2 direct air capture adsorbents[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(3): 462-475. | |
22 | ZEMAN F, LACKNER K. Capturing carbon dioxide directly from the atmosphere[J]. World Resource Review, 2004, 16: 157-172. |
23 | SOCOLOW R, DESMOND M, AINES R, et al. Direct air capture of CO2 with chemicals: A technology assessment for the APS panel on public affairs[R]. America: American Physical Society, 2011. |
24 | FRANCESCO Sabatino, ALEXA Grimm, FAUSTO Gallucci, et al. A comparative energy and costs assessment and optimization for direct air capture technologies[J]. Joule, 2021, 5(8): 2047-2076. |
25 | BACIOCCHI Renato, STORTI Giuseppe, MAZZOTTI Marco. Process design and energy requirements for the capture of carbon dioxide from air[J]. Chemical Engineering and Processing: Process Intensification, 2006, 45(12): 1047-1058. |
26 | MASAHIRO Saito, KAZUHISA Murata. Development of high performance Cu/ZnO-based catalysts for methanol synthesis and the water-gas shift reaction[J]. Catalysis Surveys from Asia, 2004, 8(4): 285-294. |
27 | HODDENBAGH J, WILFING K, MILLER K, et al. Borate autocausticizing: A cost effective technology[J]. Pulp & Paper Canada, 2002, 103: 16-22. |
28 | MAHMOUDKHANI M, HEIDEL K R, FERREIRA J C, et al. Low energy packed tower and caustic recovery for direct capture of CO2 from air[J]. Energy Procedia, 2009, 1(1): 1535-1542. |
29 | 王献红. 二氧化碳捕集和利用[M]. 北京: 化学工业出版社, 2016: 88-89. |
WANG Xianhong. CO2 capture and utilization[M]. Beijing: Chemical Industry Press, 2016: 88-89. | |
30 | KIM Seoni, CHOI Minjune, KANG Jin Soo, et al. Electrochemical recovery of LiOH from used CO2 adsorbents[J]. Catalysis Today, 2021, 359: 83-89. |
31 | SHU Qingdian, LEGRAND Louis, KUNTKE Philipp, et al. Electrochemical regeneration of spent alkaline absorbent from direct air capture[J]. Environmental Science & Technology, 2020, 54(14): 8990-8998. |
32 | LIU Xinmei, LU G Q, YAN Zifeng. Nanocrystalline zirconia as catalyst support in methanol synthesis[J]. Applied Catalysis A: General, 2005, 279(1/2): 241-245. |
33 | 郭晓明. 二氧化碳加氢合成甲醇铜基催化剂的研究[D]. 上海: 华东理工大学, 2011. |
GUO Xiaoming. Study of Cu-based catalysts for methanol synthesis by CO2 hydrogenation[D]. Shanghai: East China University of Science and Technology, 2011. | |
34 | ZEMAN Frank. Experimental results for capturing CO2 from the atmosphere[J]. AIChE Journal, 2008, 54(5): 1396-1399. |
35 | KEITH David W, HOLMES Geoffrey, ANGELO David ST, et al. A process for capturing CO2 from the atmosphere[J]. Joule, 2018, 2(10): 2179. |
36 | ROCHELLE Gary T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654. |
37 | LACKNER K S. Capture of carbon dioxide from ambient air[J]. The European Physical Journal Special Topics, 2009, 176(1): 93-106. |
38 | VELTMAN Karin, SINGH Bhawna, HERTWICH Edgar G. Human and environmental impact assessment of postcombustion CO2 capture focusing on emissions from amine-based scrubbing solvents to air[J]. Environmental Science & Technology, 2010, 44(4): 1496-1502. |
39 | LE MOULLEC Yann, NEVEUX Thibaut, AZKI Adam AL, et al. Process modifications for solvent-based post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2014, 31: 96-112. |
40 | BARZAGLI F, MANI F. Direct CO2 air capture with aqueous 2-(ethylamino)ethanol and 2-(2-aminoethoxy)ethanol: 13C NMR speciation of the absorbed solutions and study of the sorbent regeneration improved by a transition metal oxide catalyst[J]. Inorganica Chimica Acta, 2021, 518: 120256. |
41 | KIANI Ali, JIANG Kaiqi, FERON Paul. Techno-economic assessment for CO2 capture from air using a conventional liquid-based absorption process[J]. Frontiers in Energy Research, 2020, 8: 92. |
42 | SEIPP Charles A, WILLIAMS Neil J, KIDDER Michelle K, et al. CO2 capture from ambient air by crystallization with a guanidine sorbent[J]. Angewandte Chemie International Edition, 2017, 56(4): 1042-1045. |
43 | CUSTELCEAN Radu, WILLIAMS Neil J, GARRABRANT Kathleen A, et al. Direct air capture of CO2 with aqueous amino acids and solid bis-iminoguanidines (BIGs)[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 23338-23346. |
44 | BRETHOMÉ Flavien M, WILLIAMS Neil J, SEIPP Charles A, et al. Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power[J]. Nature Energy, 2018, 3(7): 553-559. |
45 | CUSTELCEAN Radu, WILLIAMS Neil J, WANG Xiaoping, et al. Dialing in direct air capture of CO2 by crystal engineering of bisiminoguanidines[J]. ChemSusChem, 2020, 13(23): 6381-6390. |
46 | RINBERG Anatoly, BERGMAN Andrew M, SCHRAG Daniel P, et al. Alkalinity concentration swing for direct air capture of carbon dioxide[J]. ChemSusChem, 2021, 14(20): 4439-4453. |
47 | ELIMELECH Menachem, PHILLIP William A. The future of seawater desalination: Energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717. |
48 | SUSS M E, PORADA S, SUN X, et al. Water desalination via capacitive deionization: What is it and what can we expect from it?[J]. Energy & Environmental Science, 2015, 8(8): 2296-2319. |
49 | Sajjad AL-AMSHAWEE, BIN MOHD YUNUS Mohd Yusri, AZODDEIN Abdul Aziz Mohd, et al. Electrodialysis desalination for water and wastewater: A review[J]. Chemical Engineering Journal, 2020, 380: 122231. |
50 | NIKULSHINA V, STEINFELD A. CO2 capture from air via CaO-carbonation using a solar-driven fluidized bed reactor—Effect of temperature and water vapor concentration[J]. Chemical Engineering Journal, 2009, 155(3): 867-873. |
51 | NIKULSHINA V, GEBALD C, STEINFELD A. CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor[J]. Chemical Engineering Journal, 2009, 146(2): 244-248. |
52 | NIKULSHINA V, GÁLVEZ M E, STEINFELD A. Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2-CaCO3-CaO solar thermochemical cycle[J]. Chemical Engineering Journal, 2007, 129(1/2/3): 75-83. |
53 | NIKULSHINA V, AYESA N, GÁLVEZ M E, et al. Feasibility of Na-based thermochemical cycles for the capture of CO2 from air—Thermodynamic and thermogravimetric analyses[J]. Chemical Engineering Journal, 2008, 140(1/2/3): 62-70. |
54 | STOLAROFF Joshuah K, LOWRY Gregory V, KEITH David W. Using CaO- and MgO-rich industrial waste streams for carbon sequestration[J]. Energy Conversion and Management, 2005, 46(5): 687-699. |
55 | COLOMBO G. Study of CO2 sorbents for extravehicular activity[R]. America: NASA, 1973 |
56 | CAMPBELL J S. Decomposition of carbonates in capture of carbon dioxide from ambient air[D]. Vancouver: University of British Columbia, 2019. |
57 | RANJAN Manya, HERZOG Howard J. Feasibility of air capture[J]. Energy Procedia, 2011, 4: 2869-2876. |
58 | VESELOVSKAYA Janna V, DEREVSCHIKOV Vladimir S, KARDASH Tatyana Yu, et al. Direct CO2 capture from ambient air using K2CO3/Al2O3 composite sorbent[J]. International Journal of Greenhouse Gas Control, 2013, 17: 332-340. |
59 | Jacek PRZEPIÓRSKI, Adam CZYŻEWSKI, PIETRZAK Robert, et al. MgO/CaO-loaded activated carbon for carbon dioxide capture: Practical aspects of use[J]. Industrial & Engineering Chemistry Research, 2013, 52(20): 6669-6677. |
60 | BALI S, SAKWA-NOVAK Miles A, JONES Christopher W. Potassium incorporated alumina based CO2 capture sorbents: Comparison with supported amine sorbents under ultra-dilute capture conditions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 486: 78-85. |
61 | DEREVSCHIKOV V, VESELOVSKAYA J, KARDASH T, et al. Direct CO2 capture from ambient air using K2CO3/Y2O3 composite sorbent[J]. Fuel, 2014, 127: 212-218. |
62 | ZHAO Chuanwen, GUO Yafei, LI Changhai, et al. Carbonation behavior of K2CO3/AC in low reaction temperature and CO2 concentration[J]. Chemical Engineering Journal, 2014, 254: 524-530. |
63 | ZHAO Chuanwen, GUO Yafei, LI Changhai, et al. Removal of low concentration CO2 at ambient temperature using several potassium-based sorbents[J]. Applied Energy, 2014, 124: 241-247. |
64 | VESELOVSKAYA Janna V, DEREVSCHIKOV Vladimir S, SHALYGIN Anton S, et al. K2CO3-containing composite sorbents based on a ZrO2 aerogel for reversible CO2 capture from ambient air[J]. Microporous and Mesoporous Materials, 2021, 310: 110624. |
65 | SANZ-PÉREZ Eloy S, MURDOCK Christopher R, DIDAS Stephanie A, et al. Direct capture of CO2 from ambient air[J]. Chemical Reviews, 2016, 116(19): 11840-11876. |
66 | CAPLOW Michael. Kinetics of carbamate formation and breakdown[J]. Journal of the American Chemical Society, 1968, 90(24): 6795-6803. |
67 | DANCKWERTS P V. The reaction of CO2 with ethanolamines[J]. Chemical Engineering Science, 1979, 34(4): 443-446. |
68 | YANG Zhenzhen, HE Liangnian, ZHAO Yanan, et al. CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion[J]. Energy & Environmental Science, 2011, 4(10): 3971-3975. |
69 | ZHU Xuancan, GE Tianshu, YANG Fan, et al. Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110651. |
70 | SINHA Anshuman, DARUNTE Lalit A, JONES Christopher W, et al. Systems design and economic analysis of direct air capture of CO2 through temperature vacuum swing adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF adsorbents[J]. Industrial & Engineering Chemistry Research, 2017, 56(3): 750-764. |
71 | LIN Zhifeng, WEI Jianwen, GENG Linlin, et al. An amine double functionalized composite strategy for CO2 adsorbent preparation using a ZSM-5/KIT-6 composite as a support[J]. Energy Technology, 2018, 6(9): 1618-1626. |
72 | WILFONG Walter Christopher, KAIL Brian W, JONES Christopher W, et al. Spectroscopic investigation of the mechanisms responsible for the superior stability of hybrid class 1/class 2 CO2 sorbents: A new class 4 category[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12780-12791. |
73 | 孔祥如, 张肖阳, 孙鹏翔, 等. 直接空气捕碳固体多孔材料的研究进展[J]. 化工进展, 2023, 42(3): 1471-1483. |
KONG Xiangru, ZHANG Xiaoyang, SUN Pengxiang, et al. Research progress of solid porous materials for direct CO2 capture from air[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1471-1483. | |
74 | MIAO Yihe, HE Zhijun, ZHU Xuancan, et al. Operating temperatures affect direct air capture of CO2 in polyamine-loaded mesoporous silica[J]. Chemical Engineering Journal, 2021, 426: 131875. |
75 | LIU Faqian, WANG Lei, HUANG Zhaoge, et al. Amine-tethered adsorbents based on three-dimensional macroporous silica for CO2 capture from simulated flue gas and air[J]. ACS Applied Materials & Interfaces, 2014, 6(6): 4371-4381. |
76 | WANG Jitong, HUANG Haihong, WANG Mei, et al. Direct capture of low-concentration CO2 on mesoporous carbon-supported solid amine adsorbents at ambient temperature[J]. Industrial & Engineering Chemistry Research, 2015, 54(19): 5319-5327. |
77 | KELLER Laura, Burkhard OHS, LENHART Jelena, et al. High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO2 capture[J]. Carbon, 2018, 126: 338-345. |
78 | GEBALD Christoph, WURZBACHER Jan Andre, TINGAUT Philippe, et al. Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air[J]. Environmental Science & Technology, 2011, 45(20): 9101-9108. |
79 | ZHAO Meng, XIAO Jiewen, GAO Wanlin, et al. Defect-rich Mg-Al MMOs supported TEPA with enhanced charge transfer for highly efficient and stable direct air capture[J]. Journal of Energy Chemistry, 2022, 68: 401-410. |
80 | ZHU Xuancan, Meng LYU, GE Tianshu, et al. Modified layered double hydroxides for efficient and reversible carbon dioxide capture from air[J]. Cell Reports Physical Science, 2021, 2(7): 100484. |
81 | KULKARNI Vaishnavi, PANDA Debashis, SINGH Sanjay Kumar. Direct air capture of CO2 over amine-modified hierarchical silica[J]. Industrial & Engineering Chemistry Research, 2023, 62(8): 3800-3811. |
82 | LIAO Peiqin, CHEN Xunwei, LIU Siyang, et al. Putting an ultrahigh concentration of amine groups into a metal-organic framework for CO2 capture at low pressures[J]. Chemical Science, 2016, 7(10): 6528-6533. |
83 | ZHANG Jianxin, ZHAO Qing, WANG Shidi, et al. Direct capture of low concentration CO2 using tetraethylenepentamine-grafted polyacrylonitrile hollow fibers[J]. Separation and Purification Technology, 2022, 287: 120562. |
84 | 宋珂琛, 崔希利, 邢华斌. 二氧化碳直接空气捕集材料与技术研究进展[J]. 化工进展, 2022, 41(3): 1152-1162. |
SONG Kechen, CUI Xili, XING Huabin. Progress on direct air capture of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1152-1162. | |
85 | QI Luming, HAN Yu, BAI Gaozhi, et al. Role of brush-like additives in CO2 adsorbents for the enhancement of amine efficiency[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106709. |
86 | WANG Jitong, LONG Donghui, ZHOU Huanhuan, et al. Surfactant promoted solid amine sorbents for CO2 capture[J]. Energy & Environmental Science, 2012, 5(2): 5742-5749. |
87 | Aliakbar HEYDARI-GORJI, BELMABKHOUT Youssef, SAYARI Abdelhamid. Polyethylenimine-impregnated mesoporous silica: Effect of amine loading and surface alkyl chains on CO2 adsorption[J]. Langmuir, 2011, 27(20): 12411-12416. |
88 | METH S, GOEPPERT A, SURYA PRAKASH G K, et al. Silica nanoparticles as supports for regenerable CO2 sorbents[J]. Energy & Fuels, 2012, 26(5): 3082-3090. |
89 | SAKWA-NOVAK Miles A, TAN Shuai, JONES Christopher W. Role of additives in composite PEI/oxide CO2 adsorbents: Enhancement in the amine efficiency of supported PEI by PEG in CO2 capture from simulated ambient air[J]. ACS Applied Materials & Interfaces, 2015, 7(44): 24748-24759. |
90 | XU Xiaochun, SONG Chunshan, ANDRÉSEN John M, et al. Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41[J]. Microporous and Mesoporous Materials, 2003, 62(1/2): 29-45. |
91 | BELMABKHOUT Youssef, Rodrigo SERNA-GUERRERO, SAYARI Abdelhamid. Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: Application for gas purification[J]. Industrial & Engineering Chemistry Research, 2010, 49(1): 359-365. |
92 | GOEPPERT Alain, CZAUN Miklos, Robert B MAY, et al. Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent[J]. Journal of the American Chemical Society, 2011, 133(50): 20164-20167. |
93 | GUTKNECHT Valentin, SNÆBJÖRNSDÓTTIR Sandra Ósk, Bergur SIGFÚSSON, et al. Creating a carbon dioxide removal solution by combining rapid mineralization of CO2 with direct air capture[J]. Energy Procedia, 2018, 146: 129-134. |
94 | CHRISTOPH Beuttler, LOUISE Charles, Wurzbacher JAN. The role of direct air capture in mitigation of anthropogenic greenhouse gas emissions[J]. Frontiers in Climate, 2019, 1: 1-7. |
95 | GRACIELA C. Carbon negative power plants and their impact on environment[R]. Argentina: Earth Dialogues, 2018. |
96 | SHEKHAH Osama, BELMABKHOUT Youssef, CHEN Zhijie, et al. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture[J]. Nature Communications, 2014, 5: 4228. |
97 | SHEKHAH Osama, BELMABKHOUT Youssef, ADIL Karim, et al. A facile solvent-free synthesis route for the assembly of a highly CO2 selective and H2S tolerant NiSIFSIX metal-organic framework[J]. Chemical Communications, 2015, 51(71): 13595-13598. |
98 | ZHANG Zhaoqiang, DING Qi, CUI Jiyu, et al. High and selective capture of low-concentration CO2 with an anion-functionalized ultramicroporous metal-organic framework[J]. Science China Materials, 2021, 64(3): 691-697. |
99 | BHATT Prashant M, BELMABKHOUT Youssef, CADIAU Amandine, et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption[J]. Journal of the American Chemical Society, 2016, 138(29): 9301-9307. |
100 | DING Meili, FLAIG Robinson W, JIANG Hailong, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chemical Society Reviews, 2019, 48(10): 2783-2828. |
101 | SADIQ Muhammad Munir, BATTEN Michael P, MULET Xavier, et al. A pilot-scale demonstration of mobile direct air capture using metal-organic frameworks[J]. Advanced Sustainable Systems, 2020, 4(12): 2000101. |
102 | SADIQ M M, BATTEN M, THORNTON A W, et al. Adsorption and desorption appratus: WO2020113281[P]. 2020-6-11. |
103 | WANG Tao, LACKNER Klaus S, WRIGHT Allen. Moisture swing sorbent for carbon dioxide capture from ambient air[J]. Environmental Science & Technology, 2011, 45(15): 6670-6675. |
104 | QUINN R, APPLEBY J B, PEZ G P. Salt hydrates: New reversible absorbents for carbon dioxide[J]. Journal of the American Chemical Society, 1995, 117(1): 329-335. |
105 | WANG Tao, GE Kun, CHEN Kexian, et al. Theoretical studies on CO2 capture behavior of quaternary ammonium-based polymeric ionic liquids[J]. Physical Chemistry Chemical Physics, 2016, 18(18): 13084-13091. |
106 | WANG Tao, HOU Chenglong, GE Kun, et al. Spontaneous cooling absorption of CO2 by a polymeric ionic liquid for direct air capture[J]. The Journal of Physical Chemistry Letters, 2017, 8(17): 3986-3990. |
107 | WANG Tao, LIU Jun, HUANG Hao, et al. Preparation and kinetics of a heterogeneous sorbent for CO2 capture from the atmosphere[J]. Chemical Engineering Journal, 2016, 284: 679-686. |
108 | SHI Xiaoyang, LI Qibin, WANG Tao, et al. Kinetic analysis of an anion exchange absorbent for CO2 capture from ambient air[J]. PLoS One, 2017, 12(6): e0179828. |
109 | WANG Tao, LIU Jun, LACKNER Klaus S, et al. Characterization of kinetic limitations to atmospheric CO2 capture by solid sorbent[J]. Greenhouse Gases: Science and Technology, 2016, 6(1): 138-149. |
110 | HE Hongkun, LI Wenwen, ZHONG Mingjiang, et al. Reversible CO2 capture with porous polymers using the humidity swing[J]. Energy & Environmental Science, 2013, 6(2): 488-493. |
111 | WANG Tao, WANG Xinru, HOU Chenglong, et al. Quaternary functionalized mesoporous adsorbents for ultra-high kinetics of CO2 capture from air[J]. Scientific Reports, 2020, 10: 21429. |
112 | 吴禹松. 用于空气二氧化碳捕集的多孔树脂吸附剂成型及性能研究[D]. 杭州: 浙江大学, 2020. |
WU Yusong. Research on formation and performance of porous resin adsorbent for direct air capture of CO2 [D]. Hangzhou: Zhejiang University, 2020. | |
113 | SONG Juzheng, LIU Jie, ZHAO Wei, et al. Quaternized chitosan/PVA aerogels for reversible CO2 capture from ambient air[J]. Industrial & Engineering Chemistry Research, 2018, 57(14): 4941-4948. |
114 | 徐锶瑶, 侯成龙, 王涛. 季铵型变湿再生材料CO2吸附热量迁移研究[J]. 能源工程, 2021(1): 54-62, 88. |
XU Siyao, HOU Chenglong, WANG Tao. The heat transfer of quaternary ammonium resin materials in the adsorption process[J]. Energy Engineering, 2021(1): 54-62, 88. | |
115 | HOU Chenglong, WU Yusong, WANG Tao, et al. Preparation of quaternized bamboo cellulose and its implication in direct air capture of CO2 [J]. Energy & Fuels, 2019, 33(3): 1745-1752. |
116 | SHI Xiaoyang, XIAO Hang, AZARABADI Habib, et al. Sorbents for the direct capture of CO2 from ambient air[J]. Angewandte Chemie International Edition, 2020, 59(18): 6984-7006. |
117 | HOU Chenglong, WU Yusong, JIAO Youzhou, et al. Integrated direct air capture and CO2 utilization of gas fertilizer based on moisture swing adsorption[J]. Journal of Zhejiang University:Science A, 2017, 18(10): 819-830. |
118 | DUYAR Melis S, Martha A Arellano TREVIÑO, FARRAUTO Robert J. Dual function materials for CO2 capture and conversion using renewable H2 [J]. Applied Catalysis B: Environmental, 2015, 168/169: 370-376. |
119 | MELO BRAVO Paulina, DEBECKER Damien P. Combining CO2 capture and catalytic conversion to methane[J]. Waste Disposal & Sustainable Energy, 2019, 1(1): 53-65. |
120 | Chae JEONG-POTTER, ABDALLAH Monica, SANDERSON Cory, et al. Dual function materials (Ru+Na2O/Al2O3) for direct air capture of CO2 and in situ catalytic methanation: The impact of realistic ambient conditions[J]. Applied Catalysis B: Environmental, 2022, 307: 120990. |
121 | 王焕君, 刘牛, 郑棹方, 等. 直接空气捕碳材料研究进展[J]. 发电技术, 2022, 43(4): 533-543. |
WANG Huanjun, LIU Niu, ZHENG Zhaofang, et al. Research progress of materials for direct capture of CO2 from ambient air[J]. Power Generation Technology, 2022, 43(4): 533-543. | |
122 | VESELOVSKAYA Janna V, PARUNIN Pavel D, NETSKINA Olga V, et al. A novel process for renewable methane production: Combining direct air capture by K2CO3/alumina sorbent with CO2 methanation over Ru/alumina catalyst[J]. Topics in Catalysis, 2018, 61(15): 1528-1536. |
123 | VESELOVSKAYA Janna V, LYSIKOV Anton I, NETSKINA Olga V, et al. K2CO3-containing composite sorbents based on thermally modified alumina: Synthesis, properties, and potential application in a direct air capture/methanation process[J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 7130-7139. |
124 | QIAO Yuanting, BAILEY Josh J, HUANG Qi, et al. Potential photo-switching sorbents for CO2 capture—A review[J]. Renewable and Sustainable Energy Reviews, 2022, 158: 112079. |
125 | PRASETYA Nicholaus, LADEWIG Bradley P. Dynamic photo-switching in light-responsive JUC-62 for CO2 capture[J]. Scientific Reports, 2017, 7: 13355. |
126 | WILM Lukas F B, Mowpriya DAS, Daniel JANSSEN-MÜLLER, et al. Photoswitchable nitrogen superbases: Using light for reversible carbon dioxide capture[J]. Angewandte Chemie International Edition, 2022, 61(3): e202112344. |
127 | 孙静静, 吴仇荣, 翁文强, 等. 调控强活性位点的智能光响应CO2吸附剂[J]. 化学学报, 2020, 78(10): 1082-1088. |
SUN Jingjing, WU Qiurong, WENG Wenqiang, et al. Smart light-responsive CO2 adsorbents for regulating strong active sites[J]. Acta Chimica Sinica, 2020, 78(10): 1082-1088. | |
128 | 李倩, 王钰, 李睿, 等. 光响应CO2吸附剂的制备及CO2吸附脱附性能的研究[J]. 石河子大学学报(自然科学版), 2021, 39(1): 1-7. |
LI Qian, WANG Yu, LI Rui, et al. Preparation of photoresponsive CO2 adsorbent and study on CO2 adsorption desorption performance[J]. Journal of Shihezi University (Natural Science), 2021, 39(1): 1-7. | |
129 | SU Jing, TENG Hui Henry, WAN Xiang, et al. Direct air capture of CO2 through carbonate alkalinity generated by phytoplankton nitrate assimilation[J]. International Journal of Environmental Research and Public Health, 2022, 20(1): 550. |
130 | ALEXANDER Caskie. Technical, policy and stakeholder analysis of direct air capture[D]. Nederland: Delft University of Technology, 2020. |
131 | FASIHI Mahdi, EFIMOVA Olga, BREYER Christian. Techno-economic assessment of CO2 direct air capture plants[J]. Journal of Cleaner Production, 2019, 224: 957-980. |
[1] | GUO Xiaodong, MAO Yujiao, LIU Xiangyang, QIU Li, YU Feng, YAN Xiaoliang. Effect of oxygen vacancies in Ni/Sm2O3-CeO2/Al2O3 catalyst on CO2 methanation at low temperature [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1840-1850. |
[2] | YANG Dongxiao, XIONG Qizhao, WANG Yi, CHEN Yang, LI Libo, LI Jinping. Progress in the preparation of hierarchically porous MOF and applications in adsorption and separation [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1882-1896. |
[3] | WANG Debin, LIN Mengyu, YANG Xue, DONG Dianquan. Preparation and adsorption properties of zinc-doped titanium-based cesium ion sieves [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1953-1961. |
[4] | WANG Kai, YE Dingding, ZHU Xun, YANG Yang, CHEN Rong, LIAO Qiang. Performance of electrochemical reduction of CO2 by superaerophilic copper foam electrode with nanowires [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1232-1240. |
[5] | LIU Fangwang, HAN Yi, ZHANG Jiajia, BU Honghong, WANG Xingpeng, YU Chuanfeng, LIU Mengshuai. Research advance of heterogeneous catalytic system for the coupling between CO2 and epoxide into propylene carbonate [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1252-1265. |
[6] | DONG Xiaohan, TIAN Yue, SU Yi. Study on the preparation of composite adsorbent with titanium-containing blast furnace slag and chromium adsorption performance [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1552-1564. |
[7] | CHEN Linlin, YU Fei, Ma JIE. Preparation of wood-based cellulose/graphene separation membrane and pollutant separation performance [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1584-1592. |
[8] | PENG Cheng, XU Yilin, SHI Yujing, ZHANG Wen, LI Yutao, WANG Haoran, ZHANG Wei, ZHAN Xiuping. Research progress on the biochar modification and its remediation of herbicide-contaminated water and soil [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1069-1081. |
[9] | GUO Yingchun, LIANG Xiaoyi. Effect of citric acid modification on the spherical activated carbon's ammonia adsorption performance [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1082-1088. |
[10] | MIAO Feng, XU Chuanlong, LI Jian, ZHANG Biao, HAN Shaopeng, TANG Guanghua. Online calibration of the wavelength of spectrometer based on SO2 absorption spectrum [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 818-822. |
[11] | HUANG Sheng, YANG Zhenli, LI Zhenyu. Analysis of optimization path of developing China's hydrogen industry [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 882-893. |
[12] | YU Xiaoxiao, CHAO Yanhong, LIU Haiyan, ZHU Wenshuai, LIU Zhichang. Enhanced photoelectric properties and photocatalytic CO2 conversion by D-A conjugated polymerization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 292-301. |
[13] | CHEN Le, CHONG Hailing, ZHANG Zhihui, HE Mingyang, CHEN Qun. Synthesis of Cu-BTC modified by CTAB and its adsorption and separation of xylene isomers [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 455-464. |
[14] | YANG Mengru, PENG Qin, CHANG Yulong, QIU Shuxing, ZHANG Jianbo, JIANG Xia. Research progress of carbon emission reduction technology with biochar replacing pulverized coal/coke for blast furnace ironmaking [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 490-500. |
[15] | CHENG Haolin, NIAN Yao, HAN You. Progress in the mechanism of CH4 and CO2co-conversion reactions [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 60-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |