1 |
付英杰, 魏英杰, 张嘉钟, 等. 喷管内雾状气液两相流场计算分析[J]. 哈尔滨工业大学学报, 2010, 42(9): 1363-1368.
|
|
FU Yingjie, WEI Yingjie, ZHANG Jiazhong, et al. Numerical simulation of gas-droplet two-phase flow field in nozzle[J]. Journal of Harbin Institute of Technology, 2010, 42(9): 1363-1368.
|
2 |
CIONCOLINI A, THOME J R. Liquid film circumferential asymmetry prediction in horizontal annular two-phase flow[J]. International Journal of Multiphase Flow, 2013, 51: 44-54.
|
3 |
WANG Chao, ZHAO Ning, FENG Yue, et al. Interfacial wave velocity of vertical gas-liquid annular flow at different system pressures[J]. Experimental Thermal and Fluid Science, 2018, 92: 20-32.
|
4 |
HOLOWACH M J, HOCHREITER L E, CHEUNG F B. A model for droplet entrainment in heated annular flow[J]. International Journal of Heat and Fluid Flow, 2002, 23(6): 807-822.
|
5 |
WANG Guanyi, DANG Zhuoran, ISHII M. Wave structure and velocity in vertical upward annular two-phase flow[J]. Experimental Thermal and Fluid Science, 2021, 120: 110205.
|
6 |
HAN Huawei, ZHU Zhenfeng, GABRIEL K. A study on the effect of gas flow rate on the wave characteristics in two-phase gas-liquid annular flow[J]. Nuclear Engineering and Design, 2006, 236(24): 2580-2588.
|
7 |
SAWANT P, ISHII M, HAZUKU T, et al. Properties of disturbance waves in vertical annular two-phase flow[J]. Nuclear Engineering and Design, 2008, 238(12): 3528-3541.
|
8 |
ZHANG Huacheng, MORI S, HISANO T, et al. Effect of gas density and surface tension on liquid film thickness in vertical upward disturbance wave flow[J]. International Journal of Multiphase Flow, 2023, 159: 104342.
|
9 |
赵宁, 贾慧君, 郭立强, 等. 环状流液滴夹带率测量方法及分析[J]. 化工进展, 2021, 40(12): 6469-6478.
|
|
ZHAO Ning, JIA Huijun, GUO Liqiang, et al. Measurement method and analysis of droplet entrainment in annular flow[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6469-6478.
|
10 |
张文强. 基于电导环液膜参数检测的涡街湿气分相流量测量研究[D]. 天津: 天津大学, 2020.
|
|
ZHANG Wenqiang. Wet gas flow measurment by combining vortex flowmeter and ring electrodes liquid film sensor[D]. Tianjin: Tianjin University, 2020.
|
11 |
WANG Chao, ZHANG Zhexiao, DING Hongbing, et al. Measurement property of vortex flowmeter in wet gas flow using mist flow apparatus[C]// 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2018: 1-6.
|
12 |
LI Jinxia, WANG Chao, DING Hongbing, et al. EMD and spectrum-centrobaric-correction-based analysis of vortex street characteristics in mist annular flow of wet gas[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(5): 1150-1160.
|
13 |
SUN Hongjun, YANG Tianyu, DING Hongbing, et al. Online measurement of gas and liquid flow rates in wet gas using vortex flowmeter coupled with conductance ring sensor[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-14.
|
14 |
LI Jinxia, WANG Chao, DING Hongbing, et al. Online measurement of wet gas by modeling frequency and amplitude characteristics of a vortex flowmeter[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6): 3666-3678.
|
15 |
BERTO A, LAVIEILLE P, AZZOLIN M, et al. Liquid film thickness and heat transfer measurements during downflow condensation inside a small diameter tube[J]. International Journal of Multiphase Flow, 2021, 140: 103649.
|
16 |
孙宏军, 桂明洋, 赵宁. 垂直管气液两相环状流界面扰动波频率特性[J]. 化工学报, 2018, 69(5): 1915-1922.
|
|
SUN Hongjun, GUI Mingyang, ZHAO Ning. Frequency characteristics of disturbance wave at vertical gas-liquid annular flow interface[J]. CIESC Journal, 2018, 69(5): 1915-1922.
|
17 |
PAN Liangming, HE Hui, JU Peng, et al. Experimental study and modeling of disturbance wave height of vertical annular flow[J]. International Journal of Heat and Mass Transfer, 2015, 89: 165-175.
|
18 |
BARNEA D, TAITEL Y. Kelvin-Helmholtz stability criteria for stratified flow: Viscous versus non-viscous (inviscid) approaches[J]. International Journal of Multiphase Flow, 1993, 19(4): 639-649.
|
19 |
WANG Zhaolin, GABRIEL K S, MANZ D L. The influences of wave height on the interfacial friction in annular gas-liquid flow under normal and microgravity conditions[J]. International Journal of Multiphase Flow, 2004, 30(10): 1193-1211.
|
20 |
ISHII M, GROLMES M A. Inception criteria for droplet entrainment in two-phase concurrent film flow[J]. AIChE Journal, 1975, 21(2): 308-318.
|
21 |
TONG L S, TANG Y S. Boiling heat transfer and two-phase flow[M]. 2nd ed. Boca Raton: CRC Press, 2018.
|
22 |
VAN WERVEN M, VAN MAANEN H R E, OOMS G, et al. Modeling wet-gas annular/dispersed flow through a venturi[J]. AIChE Journal, 2003, 49(6): 1383-1391.
|
23 |
BERNA C, ESCRIVÁ A, MUÑOZ-COBO J L, et al. Review of droplet entrainment in annular flow: Interfacial waves and onset of entrainment[J]. Progress in Nuclear Energy, 2014, 74: 14-43.
|
24 |
SAWANT P, ISHII M, MORI M. Droplet entrainment correlation in vertical upward co-current annular two-phase flow[J]. Nuclear Engineering and Design, 2008, 238(6): 1342-1352.
|
25 |
AL-SARKHI A, SARICA C, QURESHI B. Modeling of droplet entrainment in co-current annular two-phase flow: A new approach[J]. International Journal of Multiphase Flow, 2012, 39: 21-28.
|
26 |
JU Peng, LIU Yang, YANG Xiaohong, et al. Wave characteristics of vertical upward adiabatic annular flow in pipes[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118701.
|
27 |
李金霞, 丁红兵, 王超, 等. 基于液滴参数检测的涡街湿气过读预测模型[J]. 北京航空航天大学学报, 2023, 49(4): 815-824.
|
|
LI Jinxia, DING Hongbing, WANG Chao, et al. A new overreading model for wet gas vortex metering considering entrained droplet flow parameters[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(4): 815-824.
|