1 |
CHU Huaqiang, XU Nian, YU Xinyu, et al. Review of surface modification in pool boiling application: Coating manufacturing process and heat transfer enhancement mechanism[J]. Applied Thermal Engineering, 2022, 215: 119041.
|
2 |
孙雄康, 李强. 多级复合芯结构的强化沸腾传热研究[J]. 化工学报, 2022, 73(3): 1127-1135.
|
|
SUN Xiongkang, LI Qiang. Research on enhanced boiling heat transfer of multilevel composite wick structure[J]. CIESC Journal, 2022, 73(3): 1127-1135.
|
3 |
梅响, 姚元鹏, 吴慧英. 连通微通道内过冷流动沸腾传热强化机理分析[J]. 化工进展, 2022, 41(6): 2884-2892.
|
|
MEI Xiang, YAO Yuanpeng, WU Huiying. Analysis of heat transfer enhancement mechanism on subcooled flow boiling in interconnected microchannels[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2884-2892.
|
4 |
陈宏霞, 黄林滨, 宫逸飞. 多孔结构及表面浸润性对池沸腾传热影响的研究进展[J]. 化工进展, 2017, 36(8): 2798-2808.
|
|
CHEN Hongxia, HUANG Linbin, GONG Yifei. Progress on boiling heat transfer from porous structure and surface wettability[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2798-2808.
|
5 |
LIN Tao, MA Xiaojing, QUAN Xiaojun, et al. Enhanced pool boiling heat transfer on freeze-casted surfaces[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119622.
|
6 |
汪亚桥, 罗佳利, 符远翔, 等. PTFE疏水修饰法消除多孔表面的沸腾迟滞现象[J]. 工程热物理学报, 2020, 41(1): 175-179.
|
|
WANG Yaqiao, LUO Jiali, FU Yuanxiang, et al. PTFE modification to eliminate boiling hysteresis on porous surface[J]. Journal of Engineering Thermophysics, 2020, 41(1): 175-179.
|
7 |
CHEN G L, LI C H. Combined effects of liquid wicking and hydrodynamic instability on pool boiling critical heat flux by two-tier copper structures of nanowires and microgrooves[J]. International Journal of Heat and Mass Transfer, 2019, 129: 1222-1231.
|
8 |
LI Jiaqi, FU Wuchen, ZHANG Bohan, et al. Ultrascalable three-tier hierarchical nanoengineered surfaces for optimized boiling[J]. ACS Nano, 2019, 13(12): 14080-14093.
|
9 |
MA Xiaojing, XU Jinliang, XIE Jian. In-situ phase separation to improve phase change heat transfer performance[J]. Energy, 2021, 230: 120845.
|
10 |
KIBUSHI R, YUKI K, UNNO N, et al. Enhancement of the critical heat flux of saturated pool boiling by the breathing phenomenon induced by lotus copper in combination with a grooved heat transfer surface[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121663.
|
11 |
ZHANG Kai, BAI Lizhan, JIN Haichuan, et al. A comparative study of pool boiling heat transfer in different porous artery structures[J]. Applied Thermal Engineering, 2022, 202: 117759.
|
12 |
ZHANG Kai, BAI Lizhan, LIN Guiping, et al. Experimental study on pool boiling in a porous artery structure[J]. Applied Thermal Engineering, 2019, 149: 377-384.
|
13 |
SUGIOKA K. Progress in ultrafast laser processing and future prospects[J]. Nanophotonics, 2017, 6(2): 393-413.
|
14 |
潘瑞, 钟敏霖. 超快激光制备超疏水超亲水表面及超疏水表面机械耐久性[J]. 科学通报, 2019, 64(12): 1268-1289.
|
|
PAN Rui, ZHONG Minlin. Fabrication of superwetting surfaces by ultrafast lasers and mechanical durability of superhydrophobic surfaces[J]. Chinese Science Bulletin, 2019, 64(12): 1268-1289.
|
15 |
KRUSE C M, ANDERSON T, WILSON C, et al. Enhanced pool-boiling heat transfer and critical heat flux on femtosecond laser processed stainless steel surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 82: 109-116.
|
16 |
SITAR A, MOŽE M, CRIVELLARI M, et al. Nucleate pool boiling heat transfer on etched and laser structured silicon surfaces[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118956.
|
17 |
范晓光, 杨磊, 张敏. 不同压力下HFE-7100在光滑铜基表面的饱和池沸腾传热实验[J]. 化工进展, 2021, 40(1): 57-66.
|
|
FAN Xiaoguang, YANG Lei, ZHANG Min. Saturated pool boiling with HFE-7100 on a smooth copper surface under different pressures[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 57-66.
|
18 |
SAJJAD U, SADEGHIANJAHROMI A, ALI H M, et al. Enhanced pool boiling of dielectric and highly wetting liquids — A review on surface engineering[J]. Applied Thermal Engineering, 2021, 195: 117074.
|
19 |
张成云, 刘海英, 满文庆, 等. 飞秒激光正交线扫描诱导表面微纳结构[J]. 光学精密工程, 2017, 25(12): 3063-3069.
|
|
ZHANG Chengyun, LIU Haiying, MAN Wenqing, et al. Femtosecond laser induced surface micro-and nano-structures by orthogonal scanning processing[J]. Optics and Precision Engineering, 2017, 25(12): 3063-3069.
|
20 |
LIU Bin, LIU Jie, ZHANG Yonghai, et al. Experimental and theoretical study of pool boiling heat transfer and its CHF mechanism on femtosecond laser processed surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 132: 259-270.
|
21 |
LIU Bin, YANG Xi, Zhou JIE, et al. Enhanced pool boiling on micro-nano composited surfaces with nanostructures on micro-pin-fins[J]. International Journal of Heat and Mass Transfer, 2022, 190: 122812.
|
22 |
HSU Y Y. On the size range of active nucleation cavities on a heating surface[J]. ASME Journal of Heat Transfer, 1962, 84(3): 207-213.
|
23 |
LIU Bin, YANG Xi, LI Qing, et al. Enhanced pool boiling on composite microstructured surfaces with microcavities on micro-pin-fins[J]. International Communications in Heat and Mass Transfer, 2022, 138: 106350.
|