Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 4625-4634.DOI: 10.16085/j.issn.1000-6613.2021-2258
• Chemical processes and equipment • Previous Articles Next Articles
ZENG Long, ZHENG Guisen, DENG Daxiang(), SUN Jian, LIU Yongheng
Received:
2021-11-04
Revised:
2021-12-22
Online:
2022-09-27
Published:
2022-09-25
Contact:
DENG Daxiang
通讯作者:
邓大祥
作者简介:
曾龙(1995—),男,博士研究生,研究方向为微通道强化换热。
基金资助:
CLC Number:
ZENG Long, ZHENG Guisen, DENG Daxiang, SUN Jian, LIU Yongheng. Experimental study of heat transfer performance of porous wall microchannels[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4625-4634.
曾龙, 郑贵森, 邓大祥, 孙健, 刘永恒. 多孔壁面微通道换热性能的实验研究[J]. 化工进展, 2022, 41(9): 4625-4634.
1 | TUCKERMAN D B, PEASE R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
2 | KINGSTON T A, WEIBEL J A, GARIMELLA S V. Ledinegg instability-induced temperature excursion between thermally isolated, heated parallel microchannels[J]. International Journal of Heat and Mass Transfer, 2019, 132: 550-556. |
3 | MOHAMMED ADHAM A, MOHD-GHAZALI N, AHMAD R. Thermal and hydrodynamic analysis of microchannel heat sinks: a review[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 614-622. |
4 | 陈然, 唐晟. 基于金字塔形扰动结构的双层梯形微通道热沉传热性能模拟[J]. 化工进展, 2020, 39(S2): 19-25. |
CHEN Ran, TANG Sheng. Heat transfer performance simulation of double-layer trapezoidal microchannel heat sink based on pyramidal turbulence structure[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 19-25. | |
5 | DENG Daxiang, ZENG Long, SUN Wei, et al. Experimental study of flow boiling performance of open-ring pin fin microchannels[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120829. |
6 | DENG Daxiang, ZENG Long, SUN Wei. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121332. |
7 | 李娟, 朱章钰, 翟昊, 等. 基于仿生学的强化传热与减阻技术研究进展[J]. 化工进展, 2021, 40(5): 2375-2388. |
LI Juan, ZHU Zhangyu, ZHAI Hao, et al. Research progress on heat transfer enhancement and surface drag reduction techniques based on bionics[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2375-2388. | |
8 | 沈超群, 陈永平, 施明恒. 疏水微通道内流动冷凝流型实验研究[J]. 工程热物理学报, 2013, 34(1): 118-120. |
SHEN Chaoqun, CHEN Yongping, SHI Mingheng. Experimental study of flow condensation pattern in hydrophobic microchannels[J]. Journal of Engineering Thermophysics, 2013, 34(1): 118-120. | |
9 | SUJITH K C S, SURESH S, ANEESH C R, et al. Flow boiling heat transfer enhancement on copper surface using Fe doped Al2O3-TiO2 composite coatings[J]. Applied Surface Science, 2015, 334: 102-109. |
10 | SHEN B, HAMAZAKI T, MA W, et al. Enhanced pool boiling of ethanol on wettability-patterned surfaces[J]. Applied Thermal Engineering, 2019, 149: 325-331. |
11 | HE Bolin, LUO Xiaoping, YU Fan, et al. Flow boiling characteristics in bi-porous minichannel heat sink sintered with copper woven tape[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119988. |
12 | ALAM T, LI W M, CHANG W, et al. A comparative study of flow boiling HFE-7100 in silicon nanowire and plainwall microchannels[J]. International Journal of Heat and Mass Transfer, 2018, 124: 829-840. |
13 | KHANIKAR V, MUDAWAR I, FISHER T. Effects of carbon nanotube coating on flow boiling in a micro-channel[J]. International Journal of Heat and Mass Transfer, 2009, 52(15/16): 3805-3817. |
14 | PIASECKA M. Heat transfer mechanism, pressure drop and flow patterns during FC-72 flow boiling in horizontal and vertical minichannels with enhanced walls[J]. International Journal of Heat and Mass Transfer, 2013, 66: 472-488. |
15 | WAN Wei, DENG Daxiang, HUANG Qingsong, et al. Experimental study and optimization of pin fin shapes in flow boiling of micro pin fin heat sinks[J]. Applied Thermal Engineering, 2017, 114: 436-449. |
16 | KANDLIKAR S G, KUAN W K, WILLISTEIN D A, et al. Stabilization of flow boiling in microchannels using pressure drop elements and fabricated nucleation sites[J]. Journal of Heat Transfer, 2006, 128(4): 389-396. |
17 | DENG Daxiang, WAN Wei, QIN Yu, et al. Flow boiling enhancement of structured microchannels with micro pin fins[J]. International Journal of Heat and Mass Transfer, 2017, 105: 338-349. |
18 | DENG Daxiang, CHEN Xiaolong, CHEN Liang, et al. Preparation of porous structures on copper microchannel surfaces by laser writing[J]. Science China Technological Sciences, 2019, 62(12): 2261-2270. |
19 | WANG G D, CHENG P, BERGLES A E. Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels[J]. International Journal of Heat and Mass Transfer, 2008, 51(9/10): 2267-2281. |
20 | WAN Z M, JOSHI Y. Pressure drop and heat transfer characteristics of pin fin enhanced microgaps in single phase microfluidic cooling[J]. International Journal of Heat and Mass Transfer, 2017, 115: 115-126. |
21 | QU W L, SIU-HO A. Experimental study of saturated flow boiling heat transfer in an array of staggered micro-pin-fins[J]. International Journal of Heat and Mass Transfer, 2009, 52(7/8): 1853-1863. |
22 | HARIRCHIAN T, GARIMELLA S V. Microchannel size effects on local flow boiling heat transfer to a dielectric fluid[J]. International Journal of Heat and Mass Transfer, 2008, 51(15/16): 3724-3735. |
23 | LAW M, LEE P S, BALASUBRAMANIAN K. Experimental investigation of flow boiling heat transfer in novel oblique-finned microchannels[J]. International Journal of Heat and Mass Transfer, 2014, 76: 419-431. |
24 | PRAJAPATI Y K, PATHAK M, KHAN M K. A comparative study of flow boiling heat transfer in three different configurations of microchannels[J]. International Journal of Heat and Mass Transfer, 2015, 85: 711-722. |
25 | CHIEN L H, LIAO W R, GHALAMBAZ M, et al. Experimental study on convective boiling flow and heat transfer in a microgap enhanced with a staggered arrangement of nucleated micro-pin-fins[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118653. |
26 | TAYLOR J R. An introduction to error analysis[M]. 2nd ed. USA: University Science Books, 1997. |
27 | LEE P S, GARIMELLA S V. Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios[J]. International Journal of Heat and Mass Transfer, 2006, 49(17/18): 3060-3067. |
28 | ZENG Long, DENG Daxiang, ZHONG Ningbo, et al. Thermal and flow performance in microchannel heat sink with open-ring pin fins[J]. International Journal of Mechanical Sciences, 2021, 200: 106445. |
29 | HETSRONI G, MOSYAK A, POGREBNYAK E, et al. Periodic boiling in parallel micro-channels at low vapor quality[J]. International Journal of Multiphase Flow, 2006, 32(10/11): 1141-1159. |
30 | DENG Daxiang, TANG Yong, HUANG Guanghan, et al. Characterization of capillary performance of composite wicks for two-phase heat transfer devices[J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 283-293. |
31 | CORA Ö N, MIN D, KOÇ M, et al. Microscale-modulated porous coatings: Fabrication and pool-boiling heat transfer performance[J]. Journal of Micromechanics and Microengineering, 2010, 20(3): 035020. |
32 | HUANG Guanghan, LI Wenming, MA Jiaxuan, et al. High-frequency alternating nucleate boiling of water enabled by microslot arrays in microchannels[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119271. |
[1] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[2] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[3] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[4] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[5] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[6] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[7] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[8] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[9] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
[10] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[11] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[12] | CHEN Weiyang, SONG Xin, YIN Yaran, ZHANG Xianming, ZHU Chunying, FU Taotao, MA Youguang. Effect of liquid viscosity on bubble interface in the rectangular microchannel [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3468-3477. |
[13] | TAO Mengqi, LIU Meihong, KANG Yuchi. Analysis of fluid across a single cylinder and two parallel cylinders in a micro flow channel by micro-PIV [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2836-2844. |
[14] | LIU Houli, GU Zhonghao, YANG Kang, ZHANG Li. Effect of groove width on pool boiling heat transfer characteristics in 3D printing groove structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2282-2288. |
[15] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1105
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 397
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |