1 |
XU Yuandong, ZHANG Yujun. Synthesis of polypyrrole/sodium carboxymethyl cellulose nanospheres with enhanced supercapacitor performance[J]. Materials Letters, 2015, 139: 145-148.
|
2 |
LIU Panbo, YAN Jing, GUANG Zhaoxu, et al. Recent advancements of polyaniline-based nanocomposites for supercapacitors[J]. Journal of Power Sources, 2019, 424: 108-130.
|
3 |
WANG Zhaohui, CARLSSON Daniel O, TAMMELA Petter, et al. Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances[J]. ACS Nano, 2015, 9(7): 7563-7571.
|
4 |
KHOSROZADEH Ali, DARABI Mohammad Ali, XING Malcolm, et al. Flexible electrode design: fabrication of freestanding polyaniline-based composite films for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(18): 11379-11389.
|
5 |
LIU Xianbin, LAI Changgan, XIAO Zechen, et al. Superb electrolyte penetration/absorption of three-dimensional porous carbon nanosheets for multifunctional supercapacitor[J]. ACS Applied Energy Materials, 2019, 2(5): 3185-3193.
|
6 |
WANG Li, YU Jie, DONG Xuantong, et al. Three-dimensional macroporous carbon/Fe3O4-doped porous carbon nanorods for high-performance supercapacitor[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1531-1537.
|
7 |
TAN Yueming, XU Chaofa, CHEN Guangxu, et al. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor[J]. ACS Applied Materials & Interfaces, 2013, 5(6): 2241-2248.
|
8 |
YAHYA M A, AL-QODAH Z, NGAH C W Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review[J]. Renewable and Sustainable Energy Reviews, 2015, 46: 218-235.
|
9 |
ZHANG Lei, HU Xiaosong, WANG Zhenpo, et al. A review of supercapacitor modeling, estimation, and applications: a control/management perspective[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1868-1878.
|
10 |
WANG Yiliang, CHANG Binbin, GUAN Daxiang, et al. Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors[J]. Journal of Solid State Electrochemistry, 2015, 19(6): 1783-1791.
|
11 |
CHEN Haichao, JIANG Jianjun, ZHANG Li, et al. Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors[J]. Journal of Power Sources, 2014, 248: 28-36.
|
12 |
ABIOYE Adekunle Moshood, Farid Nasir ANI. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 1282-1293.
|
13 |
VOLPERTS Aleksandrs, PLAVNIECE Ance, DOBELE Galina, et al. Biomass based activated carbons for fuel cells[J]. Renewable Energy, 2019, 141: 40-45.
|
14 |
SU Xiaoli, CHENG Mingyu, FU Lin, et al. Superior supercapacitive performance of hollow activated carbon nanomesh with hierarchical structure derived from poplar catkins[J]. Journal of Power Sources, 2017, 362: 27-38.
|
15 |
SU Xiaoli, LI Shuaihui, JIANG Shuai, et al. Superior capacitive behavior of porous activated carbon tubes derived from biomass waste-cotonier strobili fibers[J]. Advanced Powder Technology, 2018, 29(9): 2097-2107.
|
16 |
董仕安. 生物质基碳材料的表面修饰及其电化学性能研究[D]. 马鞍山: 安徽工业大学, 2018.
|
|
DONG Shi’an. Surface modification of biomass-derived carbons and their electrochemical properties[D]. Maanshan: Anhui University of Technology, 2018.
|
17 |
王帅, 甘林火, 吕丽. 木质素基介孔碳材料的制备及应用进展[J]. 化工进展, 2019, 38(8): 3720-3729.
|
|
WANG Shuai, GAN Linhuo, Li LYU. Progress in preparation and application of lignin-derived mesoporous carbon materials[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3720-3729.
|
18 |
曾茂株, 佘煜琪, 胡玉彬, 等. 木质素多孔炭的制备及应用研究进展[J]. 化工进展, 2021, 40(8): 4573-4586.
|
|
ZENG Maozhu, SHE Yuqi, HU Yubin, et al. Progress in preparation and application of lignin porous carbon[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4573-4586.
|
19 |
GARCÍA-MATEOS FRANCISCO José, Ramiro RUIZ-ROSAS, MARÍA Rosas Juana, et al. Activation of electrospun lignin-based carbon fibers and their performance as self-standing supercapacitor electrodes[J]. Separation and Purification Technology, 2020, 241: 116724.
|
20 |
PENG Zhiyuan, ZOU Yubo, XU Shiqi, et al. High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22190-22200.
|
21 |
CAO Qiping, ZHU Mengni, CHEN Jiaai, et al. Novel lignin-cellulose-based carbon nanofibers as high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1210-1221.
|
22 |
SCHLEE Philipp, HEROU Servann, JERVIS Rhodri, et al. Free-standing supercapacitors from Kraft lignin nanofibers with remarkable volumetric energy density[J]. Chemical Science, 2019, 10(10): 2980-2988.
|
23 |
LIU Tao, REN Xinle, ZHANG Junmei, et al. Highly compressible lignin hydrogel electrolytes via double-crosslinked strategy for superior foldable supercapacitors[J]. Journal of Power Sources, 2020, 449: 227532.
|
24 |
JEON Ju Won, ZHANG Libing, LUTKENHAUS Jodie L, et al. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications[J]. ChemSusChem, 2015, 8(3): 428-432.
|
25 |
LIU Wanshuang, YAO Yimin, FU Ouli, et al. Lignin-derived carbon nanosheets for high-capacitance supercapacitors[J]. RSC Advances, 2017, 7(77): 48537-48543.
|
26 |
熊福全, 韩雁明, 王思群, 等. 纳米木质素的制备及应用研究现状[J]. 高分子材料科学与工程, 2016, 32(12): 156-161.
|
|
XIONG Fuquan, HAN Yanming, WANG Siqun, et al. Progress of preparation and application of lignin nanoparticles[J]. Polymer Materials Science and Engineering, 2016, 32(12): 156-161.
|
27 |
LIU Xiaoguang, MA Changde, LI Jiaxin, et al. Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors[J]. Journal of Power Sources, 2019, 412: 1-9.
|
28 |
WANG Kai, ZHAO Ning, LEI Shiwen, et al. Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors[J]. Electrochimica Acta, 2015, 166: 1-11.
|
29 |
SONG Shijiao, MA Fangwei, WU Guang, et al. Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(35): 18154-18162.
|
30 |
LIN Gaoxin, MA Ruguang, ZHOU Yao, et al. KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction[J]. Electrochimica Acta, 2018, 261: 49-57.
|
31 |
HE Jingjing, ZHANG Deyi, HAN Mei, et al. One-step large-scale fabrication of nitrogen doped microporous carbon by self-activation of biomass for supercapacitors application[J]. Journal of Energy Storage, 2019, 21: 94-104.
|
32 |
WANG Yulin, QU Qingli, GAO Shuting, et al. Biomass derived carbon as binder-free electrode materials for supercapacitors[J]. Carbon, 2019, 155: 706-726.
|
33 |
SU Xiaoli, CHEN Jingran, ZHENG Guangping, et al. Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications[J]. Applied Surface Science, 2018, 436: 327-336.
|
34 |
SAHA Dipendu, LI Yunchao, BI Zhonghe, et al. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon[J]. Langmuir, 2014, 30(3): 900-910.
|
35 |
SHANG Zhen, AN Xingye, LIU Liqin, et al. Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor[J]. Carbohydrate Polymers, 2021, 251: 117107.
|
36 |
RAYMUNDO-PIÑERO E, AZAÏS P, CACCIAGUERRA T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation[J]. Carbon, 2005, 43(4): 786-795.
|
37 |
LI Yubing, ZHANG Deyi, ZHANG Yameng, et al. Biomass-derived microporous carbon with large micropore size for high-performance supercapacitors[J]. Journal of Power Sources, 2020, 448: 227396.
|
38 |
WANG Jiacheng, KASKEL Stefan. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710-23725.
|
39 |
ROMANOS J, BECKNER M, RASH T, et al. Nanospace engineering of KOH activated carbon[J]. Nanotechnology, 2012, 23(1): 15401.
|
40 |
BORENSTEIN Arie, HANNA Ortal, ATTIAS Ran, et al. Carbon-based composite materials for supercapacitor electrodes: a review[J]. Journal of Materials Chemistry A, 2017, 5(25): 12653-12672.
|
41 |
Noel DÍEZ, FERRERO Guillermo A, SEVILLA Marta, et al. A sustainable approach to hierarchically porous carbons from tannic acid and their utilization in supercapacitive energy storage systems[J]. Journal of Materials Chemistry A, 2019, 7(23): 14280-14290.
|
42 |
曲可琪, 尤月, 孙哲, 等. 氮硼掺杂菌糠炭: 蜂窝结构用于电极材料[J]. 化工进展, 2021, 40(3): 1527-1536.
|
|
QU Keqi, YOU Yue, SUN Zhe, et al. N, B-doped carbon from fungus bran: honeycomb structure as electrode material[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1527-1536.
|
43 |
SHANG Zhen, AN Xingye, ZHANG Hao, et al. Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor[J]. Carbon, 2020, 161: 62-70.
|
44 |
ZHANG Xiudong, BAI Yuanyuan, CAO Xuefei, et al. Pretreatment of Eucalyptus in biphasic system for furfural production and accelerated enzymatic hydrolysis[J]. Bioresource Technology, 2017, 238: 1-6.
|
45 |
ZHANG Weijie, CHEN Zhongtao, GUO Xinli, et al. N/S co-doped three-dimensional graphene hydrogel for high performance supercapacitor[J]. Electrochimica Acta, 2018, 278: 51-60.
|
46 |
WANG Yahui, LIU Ruonan, TIAN Yadong, et al. Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors[J]. Chemical Engineering Journal, 2020, 384: 123263.
|
47 |
GAO Shuyan, LI Xiaoge, LI Lingyu, et al. A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation[J]. Nano Energy, 2017, 33: 334-342.
|
48 |
CHEN Wei, LI Kaixu, CHEN Zhiqun, et al. A new insight into chemical reactions between biomass and alkaline additives during pyrolysis process[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3881-3890.
|
49 |
JI Linlin, WANG Bin, YU Yanling, et al. N, S co-doped biomass derived carbon with sheet-like microstructures for supercapacitors[J]. Electrochimica Acta, 2020, 331: 135348.
|
50 |
李诗杰, 韩奎华. 活性炭孔结构及电化学性能协同优化[J]. 化工进展, 2020, 39(1): 287-293.
|
|
LI Shijie, HAN Kuihua. Synergistic optimization of pore structure and electrochemical properties of activated carbon[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 287-293.
|
51 |
CHEN Mingfeng, YU Dan, ZHENG Xiaozhong, et al. Biomass based N-doped hierarchical porous carbon nanosheets for all-solid-state supercapacitors[J]. Journal of Energy Storage, 2019, 21: 105-112.
|
52 |
WAN Mimi, SUN Xiaodan, LI Yanyan, et al. Facilely fabricating multifunctional N-enriched carbon[J]. ACS Applied Materials & Interfaces, 2016, 8(2): 1252-1263.
|
53 |
LI Aijun, CHUAN Xiuyun, YANG Yang, et al. Influence of activated condition on the structure of diatomite-templated carbons and their electrochemical properties as supercapacitors[J]. Electrochemistry, 2017, 85(11): 708-714.
|
54 |
ZHANG Guoxiong, CHEN Yuemei, CHEN Yigang, et al. Activated biomass carbon made from bamboo as electrode material for supercapacitors[J]. Materials Research Bulletin, 2018, 102: 391-398.
|
55 |
YIN Weiming, TIAN Linfei, PANG Bo, et al. Fabrication of dually N/S-doped carbon from biomass lignin: porous architecture and high-rate performance as supercapacitor[J]. International Journal of Biological Macromolecules, 2020, 156: 988-996.
|
56 |
TANG Diyong, LUO Yanyue, LEI Weidong, et al. Hierarchical porous carbon materials derived from waste lentinus edodes by a hybrid hydrothermal and molten salt process for supercapacitor applications[J]. Applied Surface Science, 2018, 462: 862-871.
|
57 |
LI Xing, TANG Yao, SONG Junhua, et al. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor[J]. Carbon, 2018, 129: 236-244.
|