Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (6): 3341-3349.DOI: 10.16085/j.issn.1000-6613.2021-1303
• Resources and environmental engineering • Previous Articles Next Articles
LU Zhiqiang1,2(), ZHANG Liang1,2(
), LI Jun1,2, FU Qian1,2, ZHU Xun1,2, LIAO Qiang1,2, CHEN Pengyu1,2
Received:
2021-06-22
Revised:
2021-08-15
Online:
2022-06-21
Published:
2022-06-10
Contact:
ZHANG Liang
卢志强1,2(), 张亮1,2(
), 李俊1,2, 付乾1,2, 朱恂1,2, 廖强1,2, 陈鹏宇1,2
通讯作者:
张亮
作者简介:
卢志强(1996—),男,硕士研究生,研究方向为废弃资源的能源转化和综合利用。E-mail:基金资助:
CLC Number:
LU Zhiqiang, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang, CHEN Pengyu. Effects of load on power generation and copper removal rate of thermally regenerative ammonia-based batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3341-3349.
卢志强, 张亮, 李俊, 付乾, 朱恂, 廖强, 陈鹏宇. 不同负载下热再生氨电池产电及Cu2+去除特性[J]. 化工进展, 2022, 41(6): 3341-3349.
1 | HEIDMANN Ilona, CALMANO Wolfgang. Removal of Zn(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Ag(Ⅰ) and Cr(Ⅵ) present in aqueous solutions by aluminium electrocoagulation[J]. Journal of Hazardous Materials, 2008, 152(3): 934-941. |
2 | 郑金鑫, 邱春生, 王晨晨, 等. Fenton处理对污泥脱水性、重金属形态及生物淋滤效率影响[J]. 化工进展, 2020, 39(2): 805-811. |
ZHENG Jinxin, QIU Chunsheng, WANG Chenchen, et al. Effects of Fenton treatment on sewage sludge dewaterability, heavy metal speciation and leaching efficiency[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 805-811. | |
3 | 何尚卫, 张雷, 张超, 等. 工业污水处理厂生化出水氨氮周年变化及原因分析[J]. 化工进展, 2018, 37(9): 3691-3698. |
HE Shangwei, ZHANG Lei, ZHANG Chao, et al. Annual variations and the cause of the ammonia nitrogen concentration in effluent of a chemical industrial wastewater treatment[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3691-3698. | |
4 | 唐志强, 张亮, 朱恂, 等. 不同Cu2+浓度下热再生氨电池产电及Cu2+去除特性[J]. 化工学报, 2019, 70(12): 4804-4810. |
TANG Zhiqiang, ZHANG Liang, ZHU Xun, et al. Effect of Cu2+ concentration in cathode on power generation and copper removal of thermally regenerative ammonia-based battery[J]. CIESC Journal, 2019, 70(12): 4804-4810. | |
5 | 张厚, 施力匀, 杨春, 等. 电镀废水处理技术研究进展[J]. 电镀与精饰, 2018, 40(2): 36-41. |
ZHANG Hou, SHI Liyun, YANG Chun, et al. Research progress of electroplating wastewater treatment technology[J]. Plating & Finishing, 2018, 40(2): 36-41. | |
6 | VERMA Anamika, BISHNOI Narsi R, GUPTA Asha. Optimization study for Pb(Ⅱ) and COD sequestration by consortium of sulphate-reducing bacteria[J]. Applied Water Science, 2017, 7(5): 2309-2320. |
7 | LI Xiaofan, SHI Shaoyuan, CAO Hongbin, et al. Comparative study of chromium(Ⅵ) removal from simulated industrial wastewater with ion exchange resins[J]. Russian Journal of Physical Chemistry A, 2018, 92(6): 1229-1236. |
8 | LI Huosheng, CHEN Yongheng, LONG Jianyou, et al. Simultaneous removal of thallium and chloride from a highly saline industrial wastewater using modified anion exchange resins[J]. Journal of Hazardous Materials, 2017, 333: 179-185. |
9 | LEE Changgu, LEE Soonjae, PARK Jeong-Ann, et al. Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam[J]. Chemosphere, 2017, 166: 203-211. |
10 | PARK Jeong Ann, KANG Jin Kyu, LEE Seung Chan, et al. Electrospun poly(acrylic acid)/poly(vinyl alcohol) nanofibrous adsorbents for Cu(Ⅱ) removal from industrial plating wastewater[J]. RSC Advances, 2017, 7(29): 18075-18084. |
11 | JESUS J M S, SCARAZZATO T, TENÓRIO J A S, et al. Permselectivity study of ion-exchange membranes in the presence of Cu-HEDP complexes from a copper plating wastewater treatment[M]//WANG S, FREE M, ALAM S, et al. Applications of process engineering principles in materials processing, energy and environmental technologies. Cham: Springer, 2017: 549-554. |
12 | SUN Hao, WANG Han, WANG He, et al. Enhanced removal of heavy metals from electroplating wastewater through electrocoagulation using carboxymethyl chitosan as corrosion inhibitor for steel anode[J]. Environmental Science: Water Research & Technology, 2018, 4(8): 1105-1113. |
13 | MIN Kyung Jin, CHOI Su Young, JANG Deokjin, et al. Separation of metals from electroplating wastewater using electrodialysis[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(20): 2471-2480. |
14 | 周杰, 宋小三, 王三反. 水处理电絮凝技术的研究进展与挑战[J]. 化工进展, 2020, 39(S2): 329-335. |
ZHOU Jie, SONG Xiaosan, WANG Sanfan. Research progress and challenge of electrocoagulation technology in water treatment[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 329-335. | |
15 | ZHANG Fang, LIU Jia, YANG Wulin, et al. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power[J]. Energy & Environmental Science, 2015, 8(1): 343-349. |
16 | ZHANG Fang, LABARGE Nicole, YANG Wulin, et al. Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures[J]. ChemSusChem, 2015, 8(6): 1043-1048. |
17 | RAHIMI Mohammad, Adriana D'ANGELO, GORSKI Christopher A, et al. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery[J]. Journal of Power Sources, 2017, 351: 45-50. |
18 | 李彦翔, 张亮, 朱恂, 等. 传质对热可再生氨电池性能的影响[J]. 工程热物理学报, 2019, 40(3): 668-671. |
LI Yanxiang, ZHANG Liang, ZHU Xun, et al. Effect of mass transfer on the performance of membrane electrode assembly typed thermally regenerative ammonia-based battery[J]. Journal of Engineering Thermophysics, 2019, 40(3): 668-671. | |
19 | ZHU Xiuping, RAHIMI Mohammad, GORSKI Christopher A, et al. A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat[J]. ChemSusChem, 2016, 9(8): 873-879. |
20 | ZHANG Liang, LI Yanxiang, ZHU Xun, et al. Copper foam electrodes for increased power generation in thermally regenerative ammonia-based batteries for low-grade waste heat recovery[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7408-7415. |
21 | 张永胜, 张亮, 李俊, 等. 采用泡沫铜电极的热再生氨电池性能数值模拟[J]. 化工学报, 2020, 71(8): 3770-3779. |
ZHANG Yongsheng, ZHANG Liang, LI Jun, et al. Numerical simulation of performance of thermally regenerative ammonia-based battery with copper foam electrode[J]. CIESC Journal, 2020, 71(8): 3770-3779. | |
22 | RAHIMI Mohammad, ZHU Liang, KOWALSKI Kelly L, et al. Improved electrical power production of thermally regenerative batteries using a poly(phenylene oxide) based anion exchange membrane[J]. Journal of Power Sources, 2017, 342: 956-963. |
23 | RAHIMI Mohammad, KIM Taeyoung, GORSKI Christopher A, et al. A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity[J]. Journal of Power Sources, 2018, 373: 95-102. |
24 | WANG Weiguang, SHU Gequn, ZHU Xiuping, et al. Decoupled electrolytes towards enhanced energy and high temperature performance of thermally regenerative ammonia batteries[J]. Journal of Materials Chemistry A, 2020, 8(25): 12351-12360. |
25 | VICARI Fabrizio, Adriana D’ANGELO, KOUKO Yohan, et al. On the regeneration of thermally regenerative ammonia batteries[J]. Journal of Applied Electrochemistry, 2018, 48(12): 1381-1388. |
26 | RAHIMI Mohammad, SCHOENER Zachary, ZHU Xiuping, et al. Removal of copper from water using a thermally regenerative electrodeposition battery[J]. Journal of Hazardous Materials, 2017, 322: 551-556. |
27 | 陈莎莎. 改进版分光光度法测定水中铜离子浓度[J]. 环球市场信息导报, 2014(29): 224. |
CHEN Shasha. Determination of copper ion concentration in water by improved spectrop-hotometry[J]. Global Marhet Information Guide, 2014(29): 224. | |
28 | 杨润萍, 李晓霞, 丁磊, 等. 污染水中铜离子浓度的快速测定[J]. 中国卫生检验杂志, 2007, 17(12): 2217-2218, 2345. |
YANG Runping, LI Xiaoxia, DING Lei, et al. Determination of copper ions in polluted water[J]. Chinese Journal of Health Laboratory Technology, 2007, 17(12): 2217-2218, 2345. | |
29 | 石雨, 张亮, 李俊, 等. 热再生电池氨再生过程强化[J]. 化工学报, 2020, 71(S2): 253-258. |
SHI Yu, ZHANG Liang, LI Jun, et al. Enhanced ammonia regeneration of thermal regenerated batteries[J]. CIESC Journal, 2020, 71(S2): 253-258. | |
30 | SHI Yu, ZHANG Liang, LI Jun, et al. Cu/Ni composite electrodes for increased anodic coulombic efficiency and electrode operation time in a thermally regenerative ammonia-based battery for converting low-grade waste heat into electricity[J]. Renewable Energy, 2020, 159: 162-171. |
31 | 孙红, 庄凯明, 喻明富, 等. 全钒液流电池传质及电流分布[J]. 工程热物理学报, 2017, 38(3): 568-574. |
SUN Hong, ZHUANG Kaiming, YU Mingfu, et al. The mass transfer and current distribution of vanadium redox flow battery[J]. Journal of Engineering Thermophysics, 2017, 38(3): 568-574. | |
32 | 姚森, 何雅玲, 席奂. 微生物燃料电池阳极生物膜传质模拟[J]. 工程热物理学报, 2013, 34(10): 1918-1921. |
YAO Sen, HE Yaling, XI Huan. Simulation of the mass transfer in anodic biofilm of a microbial fuel cell[J]. Journal of Engineering Thermophysics, 2013, 34(10): 1918-1921. | |
33 | WANG Weiguang, SHU Gequn, TIAN Hua, et al. Removals of Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ) and Ag(Ⅰ) from wastewater and electricity generation by bimetallic thermally regenerative electro-deposition batteries[J]. Separation and Purification Technology, 2020, 235: 116230. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[5] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[6] | WANG Qi, KOU Lihong, WANG Guanyu, WANG Jikun, LIU Min, LI Lanting, WANG Hao. Molecular recognition of dissolved organic matter in bio-treated effluent of coking wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4984-4993. |
[7] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[8] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[9] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[10] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[11] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[12] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[13] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[14] | CHEN Na, ZHANG Xiaojing, ZHANG Nan, MA Bingbing, ZHANG Han, YANG Haojie, ZHANG Hongzhong. Effect of quenching enzymes on partial nitrification-mixed autotrophic nitrogen removal system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3816-3823. |
[15] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 517
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 349
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |