Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2243-2255.DOI: 10.16085/j.issn.1000-6613.2021-1244
• Chemical processes and equipment • Previous Articles Next Articles
SUN Xun1,2(), ZHAO Yue1,2, XUAN Xiaoxu1,2, ZHAO Shan3, YOON Joon Yong4, CHEN Songying1,2
Received:
2021-06-15
Revised:
2021-08-08
Online:
2022-05-24
Published:
2022-05-05
Contact:
SUN Xun
孙逊1,2(), 赵越1,2, 玄晓旭1,2, 赵珊3, YOON Joon Yong4, 陈颂英1,2
通讯作者:
孙逊
作者简介:
孙逊(1989—),男,博士,副研究员,博士生导师,研究方向为水力空化反应器机理与应用。E-mail:基金资助:
CLC Number:
SUN Xun, ZHAO Yue, XUAN Xiaoxu, ZHAO Shan, YOON Joon Yong, CHEN Songying. Advances in process intensification based on hydrodynamic cavitation[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2243-2255.
孙逊, 赵越, 玄晓旭, 赵珊, YOON Joon Yong, 陈颂英. 基于水力空化的化工过程强化研究进展[J]. 化工进展, 2022, 41(5): 2243-2255.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1244
年度/年 | 处理量/L | HCR | 协同手段 | 操作条件 | 时间/min | 降解率/% | 参考文献 |
---|---|---|---|---|---|---|---|
2008 | 40 | Swirling reactor | H2O2∶100mg/L | pin=0.6MPa,Cinitial=5mg/L, Tinitial=40℃,pH=5.4 | 180 | 87 | [ |
2009 | 25 | Swirling reactor | H2O2∶150mg/L | pin=0.6MPa,Cinitial=10mg/L, Tinitial=50℃,pH=3 | 180 | 99.1 | [ |
2010 | 4 | Venturi | H2O2∶200mg/L | pin=4.8bar,Cinitial=10mg/L, Tinitial=30℃,pH=2.5 | 120 | 99.9 | [ |
2013 | 30 | Orifice | 铁片 | pin=5.8bar,Cinitial=2mg/L, Tinitial=25℃,pH=3 | 240 | 87 | [ |
2016 | 50 | Ecowirl reactor | NaOCl∶4mg/L | pin=2bar,Cinitial=3mg/L, Tinitial=(19±1)℃,pH=4 | 169 | 94 | [ |
2017 | 30 | Venturi | Fenton(H2O2∶30mg/L,FeSO4∶5mg/L) | pin=10MPa,Cinitial=33mg/L, Tinitial=26℃,pH=3 | 120 | 99.72 | [ |
2018 | 10 | Orifice | H2O2∶6mL/L,水凝胶∶25g, 埃洛石黏土∶0.5g | pin=6bar,Cinitial=70mg/L, Tinitial=N/A,pH=7.62 | 120 | 65 | [ |
2018 | 20 | Venturi | AC∶220W | pin=0.4MPa,Cinitial=20μmol/L, Tinitial=25℃,pH=N/A | 120 | 33 | [ |
2020 | 5 | Venturi | TiO2∶0.5mg/L | pin=3bar,Cinitial=10mg/L, Tinitial=45℃,pH=3 | 150 | 91.1 | [ |
2021 | 4 | Venturi | — | pin=0.4MPa,Cinitial=10mg/L, Tinitial=25℃,pH=3 | 120 | 38.7 | [ |
年度/年 | 处理量/L | HCR | 协同手段 | 操作条件 | 时间/min | 降解率/% | 参考文献 |
---|---|---|---|---|---|---|---|
2008 | 40 | Swirling reactor | H2O2∶100mg/L | pin=0.6MPa,Cinitial=5mg/L, Tinitial=40℃,pH=5.4 | 180 | 87 | [ |
2009 | 25 | Swirling reactor | H2O2∶150mg/L | pin=0.6MPa,Cinitial=10mg/L, Tinitial=50℃,pH=3 | 180 | 99.1 | [ |
2010 | 4 | Venturi | H2O2∶200mg/L | pin=4.8bar,Cinitial=10mg/L, Tinitial=30℃,pH=2.5 | 120 | 99.9 | [ |
2013 | 30 | Orifice | 铁片 | pin=5.8bar,Cinitial=2mg/L, Tinitial=25℃,pH=3 | 240 | 87 | [ |
2016 | 50 | Ecowirl reactor | NaOCl∶4mg/L | pin=2bar,Cinitial=3mg/L, Tinitial=(19±1)℃,pH=4 | 169 | 94 | [ |
2017 | 30 | Venturi | Fenton(H2O2∶30mg/L,FeSO4∶5mg/L) | pin=10MPa,Cinitial=33mg/L, Tinitial=26℃,pH=3 | 120 | 99.72 | [ |
2018 | 10 | Orifice | H2O2∶6mL/L,水凝胶∶25g, 埃洛石黏土∶0.5g | pin=6bar,Cinitial=70mg/L, Tinitial=N/A,pH=7.62 | 120 | 65 | [ |
2018 | 20 | Venturi | AC∶220W | pin=0.4MPa,Cinitial=20μmol/L, Tinitial=25℃,pH=N/A | 120 | 33 | [ |
2020 | 5 | Venturi | TiO2∶0.5mg/L | pin=3bar,Cinitial=10mg/L, Tinitial=45℃,pH=3 | 150 | 91.1 | [ |
2021 | 4 | Venturi | — | pin=0.4MPa,Cinitial=10mg/L, Tinitial=25℃,pH=3 | 120 | 38.7 | [ |
年度/年 | 处理量/L | HCR | 其他手段 | 操作条件 | 时间/min | 消毒率/% | 参考文献 |
---|---|---|---|---|---|---|---|
2006 | 18 | Orifice | — | pin=1500kPa,Cinitial=N/A,Tinitial=32℃ | 251 | 57.8① | [ |
2007 | 4 | LWR | O3∶6.42~7.49mg/L,以5L/min 的流量在第0和第90min分别 通入15min | Pin=1500psi,Cinitial=108~109CFU/mL,Tinitial=(35±5)℃ | 180 | 71.2 | [ |
2008 | 50 | Orifice | — | pin =100kPa,Cinitial≈107CFU/mL,Tinitial=N/A | 120 | 32.7 | [ |
2009 | 2 | Rotating disk | — | Einput=490W/L,Cinitial=N/A,Tinitial=N/A | 3 | 75② | [ |
2015 | 40 | Orifice | — | Pin=12MPa,Cinitial≈107CFU/mL,Tinitial=33℃ | 30 | 100 | [ |
2018 | 4 | Venturi | — | pin=0.2bar,Cinitial≈107CFU/mL,Tinitial=23℃ | 120 | 75.4 | [ |
2018 | 2 | ARHCR | — | N=9025r/min,Cinitial≈107CFU/mL,Tinitial=23℃ | 150 | 99.95 | [ |
2018 | 0.25 | ARHCR | — | N=3000r/min,Cinitial=105CFU/mL,T<58℃ | 10 | 100 | [ |
2018 | 60 | ARHCR | — | N=3600r/min,Cinitial=108CFU/mL,Tinitial=23℃ | 14 | 100 | [ |
2020 | 21 | Orifice | — | pdischarge=7.5bar,Cinitial=6×105CFU/mL,Tinitial=N/A | 360 | 99.4 | [ |
年度/年 | 处理量/L | HCR | 其他手段 | 操作条件 | 时间/min | 消毒率/% | 参考文献 |
---|---|---|---|---|---|---|---|
2006 | 18 | Orifice | — | pin=1500kPa,Cinitial=N/A,Tinitial=32℃ | 251 | 57.8① | [ |
2007 | 4 | LWR | O3∶6.42~7.49mg/L,以5L/min 的流量在第0和第90min分别 通入15min | Pin=1500psi,Cinitial=108~109CFU/mL,Tinitial=(35±5)℃ | 180 | 71.2 | [ |
2008 | 50 | Orifice | — | pin =100kPa,Cinitial≈107CFU/mL,Tinitial=N/A | 120 | 32.7 | [ |
2009 | 2 | Rotating disk | — | Einput=490W/L,Cinitial=N/A,Tinitial=N/A | 3 | 75② | [ |
2015 | 40 | Orifice | — | Pin=12MPa,Cinitial≈107CFU/mL,Tinitial=33℃ | 30 | 100 | [ |
2018 | 4 | Venturi | — | pin=0.2bar,Cinitial≈107CFU/mL,Tinitial=23℃ | 120 | 75.4 | [ |
2018 | 2 | ARHCR | — | N=9025r/min,Cinitial≈107CFU/mL,Tinitial=23℃ | 150 | 99.95 | [ |
2018 | 0.25 | ARHCR | — | N=3000r/min,Cinitial=105CFU/mL,T<58℃ | 10 | 100 | [ |
2018 | 60 | ARHCR | — | N=3600r/min,Cinitial=108CFU/mL,Tinitial=23℃ | 14 | 100 | [ |
2020 | 21 | Orifice | — | pdischarge=7.5bar,Cinitial=6×105CFU/mL,Tinitial=N/A | 360 | 99.4 | [ |
年度/年 | 处理量/L | HCR | 温度/℃ | 醇,摩尔比 | 催化剂,质量分数/% | 时间/min | 产率(质量分数)/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
2008 | 10 | Orifice | 28 | MeOH,1∶10 | H2SO4,1 | 90 | 92① | [ |
2013 | 10 | Orifice | 60 | MeOH,1∶6 | KOH,1 | 10 | >95① | [ |
2014 | 15 | Venturi | <64.7 | MeOAC,1∶12 | CH3OK,1 | 30 | 89.24 | [ |
2015 | 50 | Orifice | 60 | MeOH,1∶6 | KOH,1 | 15 | 98.1① | [ |
2016 | 7.5 | ARHCR | 55 | MeOH,1∶0.25(体积比) | NaOH,5.67(g/L) | 15+15 | 99① | [ |
2017 | 0.3 | HSH | 65 | MeOH,1∶6 | H2SO4,1 | N/A | 88 | [ |
50 | MeOH,1∶10 | CaO,1 | 30 | |||||
2017 | N/A | ARHCR | 50 | MeOH,1∶12 | KOH,3 | 120 | 97 | [ |
2018 | 4② | Venturi | 63 | MeOH,1∶6 | KOH,1.1 | 8 | 95.6±0.8 | [ |
2019 | 10 | Orifice | 35 ± 3 | MeOH,1∶6.8 | NaOH,1 | 5 | 99① | [ |
年度/年 | 处理量/L | HCR | 温度/℃ | 醇,摩尔比 | 催化剂,质量分数/% | 时间/min | 产率(质量分数)/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
2008 | 10 | Orifice | 28 | MeOH,1∶10 | H2SO4,1 | 90 | 92① | [ |
2013 | 10 | Orifice | 60 | MeOH,1∶6 | KOH,1 | 10 | >95① | [ |
2014 | 15 | Venturi | <64.7 | MeOAC,1∶12 | CH3OK,1 | 30 | 89.24 | [ |
2015 | 50 | Orifice | 60 | MeOH,1∶6 | KOH,1 | 15 | 98.1① | [ |
2016 | 7.5 | ARHCR | 55 | MeOH,1∶0.25(体积比) | NaOH,5.67(g/L) | 15+15 | 99① | [ |
2017 | 0.3 | HSH | 65 | MeOH,1∶6 | H2SO4,1 | N/A | 88 | [ |
50 | MeOH,1∶10 | CaO,1 | 30 | |||||
2017 | N/A | ARHCR | 50 | MeOH,1∶12 | KOH,3 | 120 | 97 | [ |
2018 | 4② | Venturi | 63 | MeOH,1∶6 | KOH,1.1 | 8 | 95.6±0.8 | [ |
2019 | 10 | Orifice | 35 ± 3 | MeOH,1∶6.8 | NaOH,1 | 5 | 99① | [ |
1 | 孙宏伟, 陈建峰. 我国化工过程强化技术理论与应用研究进展[J]. 化工进展, 2011, 30(1): 1-15. |
SUN Hongwei, CHEN Jianfeng. Advances in fundamental study and application of chemical process intensification technology in China[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 1-15. | |
2 | 董正亚, 陈光文, 赵帅南, 等. 声化学微反应器——超声和微反应器协同强化[J]. 化工学报, 2018, 69(1): 102-115. |
DONG Zhengya, CHEN Guangwen, ZHAO Shuainan, et al. Sonochemical microreactor—Synergistic intensification of ultrasound and microreactor[J]. CIESC Journal, 2018, 69(1): 102-115. | |
3 | BHAT Akash P, GOGATE Parag R. Cavitation-based pre-treatment of wastewater and waste sludge for improvement in the performance of biological processes: a review[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 104743. |
4 | 季斌, 程怀玉, 黄彪, 等. 空化水动力学非定常特性研究进展及展望[J]. 力学进展, 2019, 49(1): 201906. |
JI Bin, CHENG Huaiyu, HUANG Biao, et al. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation[J]. Advances in Mechanics, 2019, 49(1): 201906. | |
5 | PANDIT Aniruddha B, JOSHI J B. Hydrolysis of fatty oils: effect of cavitation[J]. Chemical Engineering Science, 1993, 48(19): 3440-3442. |
6 | WU Zhilin, TAGLIAPIETRA Silvia, GIRAUDO Alessadro, et al. Harnessing cavitational effects for green process intensification[J]. Ultrasonics Sonochemistry, 2019, 52: 530-546. |
7 | POKHREL Nimesh, VABBINA Phani Kiran, PALA Nezih. Sonochemistry: science and engineering[J]. Ultrasonics Sonochemistry, 2016, 29: 104-128. |
8 | SUPPONEN Outi, KOBEL Philippe, OBRESCHKOW Danail, et al. The inner world of a collapsing bubble[J]. Physics of Fluids, 2015, 27(9): 091113. |
9 | DIJKINK Rory, Claus-Dieter OHL. Measurement of cavitation induced wall shear stress[J]. Applied Physics Letters, 2008, 93(25): 254107. |
10 | HOLZFUSS Joachim, Matthias RÜGGEBERG, BILLO Andreas. Shock wave emissions of a sonoluminescing bubble[J]. Physical Review Letters, 1998, 81(24): 5434-5437. |
11 | VOGEL A, LAUTERBORN W, TIMM R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary[J]. Journal of Fluid Mechanics, 1989, 206: 299-338. |
12 | PHILIPP A, LAUTERBORN W. Cavitation erosion by single laser-produced bubbles[J]. Journal of Fluid Mechanics, 1998, 361: 75-116. |
13 | SUSLICK Kenneth S, HAMMERTON David A, CLINE Raymond E. Sonochemical hot spot[J]. Journal of the American Chemical Society, 1986, 108(18): 5641-5642. |
14 | SUSLICK Kenneth S. Sonochemistry[J]. Science, 1990, 247(4949): 1439-1445. |
15 | ADEWUYI Yusuf G. Sonochemistry: environmental science and engineering applications[J]. Industrial & Engineering Chemistry Research, 2001, 40(22): 4681-4715. |
16 | 吕效平, 丁德胜, 张萍. 超声化工过程强化[M]. 北京: 化学工业出版社, 2020. |
Xiaoping LYU, DING Desheng, ZHANG Ping. Ultrasonic chemical process intensification[M]. Beijing: Chemical Industry Publishing Press, 2020. | |
17 | Michał GĄGOL, PRZYJAZNY Andrzej, BOCZKAJ Grzegorz. Wastewater treatment by means of advanced oxidation processes based on cavitation: a review[J]. Chemical Engineering Journal, 2018, 338: 599-627. |
18 | FEDOROV Kirill, SUN Xun, BOCZKAJ Grzegorz. Combination of hydrodynamic cavitation and SR-AOPs for simultaneous degradation of BTEX in water[J]. Chemical Engineering Journal, 2021,417: 128081. |
19 | WANG Jingang, WANG Xikui, GUO Peiquan, et al. Degradation of reactive brilliant red K-2BP in aqueous solution using swirling jet-induced cavitation combined with H2O2 [J]. Ultrasonics Sonochemistry, 2011, 18(2): 494-500. |
20 | BASIRI PARSA Jalal, EBRAHIMZADEH ZONOUZIAN Seyyed Alireza. Optimization of a heterogeneous catalytic hydrodynamic cavitation reactor performance in decolorization of Rhodamine B: application of scrap iron sheets[J]. Ultrasonics Sonochemistry, 2013, 20(6): 1442-1449. |
21 | LI Pan, SONG Yuan, WANG Shuai, et al. Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation[J]. Ultrasonics Sonochemistry, 2015, 22: 132-138. |
22 | WANG Xikui, WANG Jingang, GUO Peiquan, et al. Chemical effect of swirling jet-induced cavitation: degradation of Rhodamine B in aqueous solution[J]. Ultrasonics Sonochemistry, 2008, 15(4): 357-363. |
23 | WANG Xikui, WANG Jingang, GUO Peiquan, et al. Degradation of rhodamine B in aqueous solution by using swirling jet-induced cavitation combined with H2O2 [J]. Journal of Hazardous Materials, 2009, 169(1): 486-491. |
24 | MISHRA Kashyap P, GOGATE Parag R. Intensification of degradation of Rhodamine B using hydrodynamic cavitation in the presence of additives[J]. Separation and Purification Technology, 2010, 75(3): 385-391. |
25 | MANCUSO Giuseppe, LANGONE Michela, LAEZZA Marco, et al. Decolourization of Rhodamine B: a swirling jet-induced cavitation combined with NaOCl[J]. Ultrasonics Sonochemistry, 2016, 32: 18-30. |
26 | TAO Yuequn, CAI Jun, HUAI Xiulan, et al. A novel device for hazardous substances degradation based on double-cavitating-jets impingement: parameters optimization and efficiency assessment[J]. Journal of Hazardous Materials, 2017, 335: 188-196. |
27 | BETHI Bhaskar, MANASA V, SRINIJA K, et al. Intensification of Rhodamine-B dye removal using hydrodynamic cavitation coupled with hydrogel adsorption[J]. Chemical Engineering and Processing Process Intensification, 2018, 134: 51-57. |
28 | YI Chunhai, LU Qianqian, WANG Yun, et al. Degradation of organic wastewater by hydrodynamic cavitation combined with acoustic cavitation[J]. Ultrasonics Sonochemistry, 2018, 43: 156-165. |
29 | LI Guanshu, YI Ludong, WANG Jun, et al. Hydrodynamic cavitation degradation of Rhodamine B assisted by Fe3+-doped TiO2: mechanisms, geometric and operation parameters[J]. Ultrasonics Sonochemistry, 2020, 60: 104806. |
30 | YE Yufang, ZHU Ying, LU Na, et al. Treatment of Rhodamine B with cavitation technology: comparison of hydrodynamic cavitation with ultrasonic cavitation[J]. RSC Advances, 2021, 11(9): 5096-5106. |
31 | JOSHI Saurabh M, GOGATE Parag R. Intensification of industrial wastewater treatment using hydrodynamic cavitation combined with advanced oxidation at operating capacity of 70 L[J]. Ultrasonics Sonochemistry, 2019, 52: 375-381. |
32 | THANEKAR Pooja, PANDA Mihir, GOGATE Parag R. Degradation of carbamazepine using hydrodynamic cavitation combined with advanced oxidation processes[J]. Ultrasonics Sonochemistry, 2018, 40: 567-576. |
33 | CHOI Jongbok, CUI Mingcan, LEE Yonghyeon, et al. Hydrodynamic cavitation and activated persulfate oxidation for degradation of bisphenol A: kinetics and mechanism[J]. Chemical Engineering Journal, 2018, 338: 323-332. |
34 | WANG Xiaoning, JIA Jinping, WANG Yalin. Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline[J]. Chemical Engineering Journal, 2017, 315: 274-282. |
35 | PANDA Debabrata, MANICKAM Sivakumar. Hydrodynamic cavitation assisted degradation of persistent endocrine-disrupting organochlorine pesticide Dicofol: optimization of operating parameters and investigations on the mechanism of intensification[J]. Ultrasonics Sonochemistry, 2019, 51: 526-532. |
36 | JAWALE Rajashree H, GOGATE Parag R. Novel approaches based on hydrodynamic cavitation for treatment of wastewater containing potassium thiocyanate[J]. Ultrasonics Sonochemistry, 2019, 52: 214-223. |
37 | BARIK Arati J, GOGATE Parag R. Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone[J]. Ultrasonics Sonochemistry, 2016, 30: 70-78. |
38 | RAJORIYA Sunil, BARGOLE Swapnil, SAHARAN Virendra Kumar. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: reaction mechanism and pathway[J]. Ultrasonics Sonochemistry, 2017, 34: 183-194. |
39 | CHAKINALA Anand G, GOGATE Parag R, BURGESS Arthur E, et al. Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process[J]. Ultrasonics Sonochemistry, 2008, 15(1): 49-54. |
40 | BADVE Mandar, GOGATE Parag, PANDIT Aniruddha, et al. Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry[J]. Separation and Purification Technology, 2013, 106: 15-21. |
41 | THANEKAR Pooja, GOGATE Parag R. Combined hydrodynamic cavitation based processes as an efficient treatment option for real industrial effluent[J]. Ultrasonics Sonochemistry, 2019, 53: 202-213. |
42 | PATIL Vishal V, GOGATE Parag R, BHAT Akash P, et al. Treatment of laundry wastewater containing residual surfactants using combined approaches based on ozone, catalyst and cavitation[J]. Separation and Purification Technology, 2020, 239: 116594. |
43 | MUKHERJEE Anupam, MULLICK Aditi, TEJA Ravi, et al. Performance and energetic analysis of hydrodynamic cavitation and potential integration with existing advanced oxidation processes: a case study for real life greywater treatment[J]. Ultrasonics Sonochemistry, 2020, 66: 105116. |
44 | WANG Baowei, SU Huijuan, ZHANG Bo. Hydrodynamic cavitation as a promising route for wastewater treatment: a review[J]. Chemical Engineering Journal, 2021, 412: 128685. |
45 | MARMOTTANT Philippe, HILGENFELDT Sascha. Controlled vesicle deformation and lysis by single oscillating bubbles[J]. Nature, 2003, 423(6936): 153-156. |
46 | SUN Xun, WANG Zhengquan, XUAN Xiaoxu, et al. Disinfection characteristics of an advanced rotational hydrodynamic cavitation reactor in pilot scale[J]. Ultrasonics Sonochemistry, 2021, 73: 105543. |
47 | SUN Xun, XUAN Xiaoxu, JI Li, et al. A novel continuous hydrodynamic cavitation technology for the inactivation of pathogens in milk[J]. Ultrasonics Sonochemistry, 2021, 71: 105382. |
48 | MANE Maya B, BHANDARI Vinay M, BALAPURE Kshama, et al. A novel hybrid cavitation process for enhancing and altering rate of disinfection by use of natural oils derived from plants[J]. Ultrasonics Sonochemistry, 2020, 61: 104820. |
49 | BALASUNDARAM B, HARRISON S T L. Study of physical and biological factors involved in the disruption of E. coli by hydrodynamic cavitation[J]. Biotechnology Progress, 2006, 22(3): 907-913. |
50 | CERECEDO Luis M, DOPAZO Cesar, Rafael GOMEZ-LUS. Water disinfection by hydrodynamic cavitation in a rotor-stator device[J]. Ultrasonics Sonochemistry, 2018, 48: 71-78. |
51 | XIE Li, TERADA Akihiko, HOSOMI Masaaki. Disentangling the multiple effects of a novel high pressure jet device upon bacterial cell disruption[J]. Chemical Engineering Journal, 2017, 323: 105-113. |
52 | LI Pan, SONG Yuan, YU Shuili. Removal of Microcystis aeruginosa using hydrodynamic cavitation: performance and mechanisms[J]. Water Research, 2014, 62: 241-248. |
53 | KOSEL Janez, Ion GUTIéRREZ-AGUIRRE, Nejc RAČKI, et al. Efficient inactivation of MS-2 virus in water by hydrodynamic cavitation[J]. Water Research, 2017, 124: 465-471. |
54 | CHAND Rashmi, BREMNER David H, NAMKUNG Kyu C, et al. Water disinfection using the novel approach of ozone and a liquid whistle reactor[J]. Biochemical Engineering Journal, 2007, 35(3): 357-364. |
55 | ARROJO S, BENITO Y, MARTíNEZ TARIFA A. A parametrical study of disinfection with hydrodynamic cavitation[J]. Ultrasonics Sonochemistry, 2008, 15(5): 903-908. |
56 | MEZULE L, TSYFANSKY S, YAKUSHEVICH V, et al. A simple technique for water disinfection with hydrodynamic cavitation: effect on survival of Escherichia coli [J]. Desalination, 2009, 248(1): 152-159. |
57 | DALFRÉ FILHO José Gilberto, ASSIS Maiara Pereira, GENOVEZ Ana Inés Borri. Bacterial inactivation in artificially and naturally contaminated water using a cavitating jet apparatus[J]. Journal of Hydro-environment Research, 2015, 9(2): 259-267. |
58 | Andrej ŠARC, KOSEL Janez, STOPAR David, et al. Removal of bacteria Legionella pneumophila, Escherichia coli, and Bacillus subtilis by (super)cavitation[J]. Ultrasonics Sonochemistry, 2018, 42: 228-236. |
59 | SUN Xun, PARK Jong Jin, KIM Hyun Soo, et al. Experimental investigation of the thermal and disinfection performances of a novel hydrodynamic cavitation reactor[J]. Ultrasonics Sonochemistry, 2018, 49: 13-23. |
60 | BURZIO E, BERSANI F, CARIDI G C A, et al. Water disinfection by orifice-induced hydrodynamic cavitation[J]. Ultrasonics Sonochemistry, 2020, 60: 104740. |
61 | ZHOU Xiaoqin, ZHAO Junyuan, LI Zifu, et al. Influence of ultrasound enhancement on chlorine dioxide consumption and disinfection by-products formation for secondary effluents disinfection[J]. Ultrasonics Sonochemistry, 2016, 28: 376-381. |
62 | ZUPANC Mojca, Žiga PANDUR, STEPIŠNIK PERDIH Tadej, et al. Effects of cavitation on different microorganisms: the current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research[J]. Ultrasonics Sonochemistry, 2019, 57: 147-165. |
63 | SUN Xun, LIU Jingting, JI Li, et al. A review on hydrodynamic cavitation disinfection: the current state of knowledge[J]. Science of the Total Environment, 2020, 737: 139606. |
64 | KELKAR Mandar A, GOGATE Parag R, PANDIT Aniruddha B. Intensification of esterification of acids for synthesis of biodiesel using acoustic and hydrodynamic cavitation[J]. Ultrasonics Sonochemistry, 2008, 15(3): 188-194. |
65 | GHAYAL Dyneshwar, PANDIT Aniruddha B, RATHOD Virendra K. Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil[J]. Ultrasonics Sonochemistry, 2013, 20(1): 322-328. |
66 | MADDIKERI Ganesh L, GOGATE Parag R, PANDIT Aniruddha B. Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil[J]. Fuel, 2014, 137: 285-292. |
67 | CHUAH Lai Fatt, YUSUP Suzana, AZIZ Abdul Rashid ABD, et al. Intensification of biodiesel synthesis from waste cooking oil (Palm Olein) in a Hydrodynamic Cavitation Reactor: effect of operating parameters on methyl ester conversion[J]. Chemical Engineering and Processing: Process Intensification, 2015, 95: 235-240. |
68 | CRUDO Daniele, BOSCO Valentina, Giuliano CAVAGLIà, et al. Biodiesel production process intensification using a rotor-stator type generator of hydrodynamic cavitation[J]. Ultrasonics Sonochemistry, 2016, 33: 220-225. |
69 | JOSHI Saurabh, GOGATE Parag R, MOREIRA Paulo F, et al. Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer[J]. Ultrasonics Sonochemistry, 2017, 39: 645-653. |
70 | MOHOD Ashish V, GOGATE Parag R, VIEL Gabriel, et al. Intensification of biodiesel production using hydrodynamic cavitation based on high speed homogenizer[J]. Chemical Engineering Journal, 2017, 316: 751-757. |
71 | CHITSAZ Hamidreza, OMIDKHAH Mohammadreza, GHOBADIAN Barat, et al. Optimization of hydrodynamic cavitation process of biodiesel production by response surface methodology[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 2262-2268. |
72 | BARGOLE Swapnil, GEORGE Suja, KUMAR SAHARAN Virendra. Improved rate of transesterification reaction in biodiesel synthesis using hydrodynamic cavitating devices of high throat perimeter to flow area ratios[J]. Chemical Engineering and Processing Process Intensification, 2019, 139: 1-13. |
73 | TAN Shiou Xuan, Steven LIM, Hwai Chyuan ONG, et al. State of the art review on development of ultrasound-assisted catalytic transesterification process for biodiesel production[J]. Fuel, 2019, 235: 886-907. |
74 | JI Jianbing, WANG Jianli, LI Yongchao, et al. Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation[J]. Ultrasonics, 2006, 44: e411-e414. |
75 | CHUAH Lai Fatt, AZIZ Abdul Rashid Abd, YUSUP Suzana, et al. Performance and emission of diesel engine fuelled by waste cooking oil methyl ester derived from palm olein using hydrodynamic cavitation[J]. Clean Technologies and Environmental Policy, 2015, 17(8): 2229-2241. |
76 | SIVARAMAKRISHNAN Ramachandran, INCHAROENSAKDI Aran. Microalgae as feedstock for biodiesel production under ultrasound treatment: a review[J]. Bioresource Technology, 2018, 250: 877-887. |
77 | TERÁN HILARES Ruly, KAMOEI Douglas Viana, AHMED Muhammad Ajaz, et al. A new approach for bioethanol production from sugarcane bagasse using hydrodynamic cavitation assisted-pretreatment and column reactors[J]. Ultrasonics Sonochemistry, 2018, 43: 219-226. |
78 | RAMIREZ-CADAVID David A, KOZYUK Oleg, MICHEL Frederick C. Improvement in commercial scale dry mill corn ethanol production using controlled flow cavitation and cellulose hydrolysis[J]. Biomass Conversion and Biorefinery, 2014, 4(3): 211-224. |
79 | TERÁN HILARES Ruly, RAMOS Lucas, SILVA Silvio Silvério DA, et al. Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment[J]. Critical Reviews in Biotechnology, 2018, 38(4): 483-493. |
80 | YAN Jingchen, AI Shuo, YANG Feng, et al. Study on mechanism of chitosan degradation with hydrodynamic cavitation[J]. Ultrasonics Sonochemistry, 2020, 64: 105046. |
81 | MERZKIRCH Wolfgang, ROCKWELL Donald, TROPEA Cameron. Experimental fluid mechanics[M]. Springer International Publishing, 2015. |
82 | Ana KOVAČIČ, David ŠKUFCA, ZUPANC Mojca, et al. The removal of bisphenols and other contaminants of emerging concern by hydrodynamic cavitation: from lab-scale to pilot-scale[J]. Science of the Total Environment, 2020, 743: 140724. |
83 | Martin PETKOVŠEK, MLAKAR Matej, LEVSTEK Marjetka, et al. A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration[J]. Ultrasonics Sonochemistry, 2015, 26: 408-414. |
84 | MILLY P J, TOLEDO R T, HARRISON M A, et al. Inactivation of food spoilage microorganisms by hydrodynamic cavitation to achieve pasteurization and sterilization of fluid foods[J]. Journal of Food Science, 2007, 72(9): M414-M422. |
85 | SUN Xun, YOU Weibin, XUAN Xiaoxu, et al. Effect of the cavitation generation unit structure on the performance of an advanced hydrodynamic cavitation reactor for process intensifications[J]. Chemical Engineering Journal, 2021, 412: 128600. |
86 | KWON Woo Chul, YOON Joon Yong. Experimental study of a cavitation heat generator[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2013, 227(1): 67-73. |
87 | KOSEL Janez, Matej ŠUŠTARŠIČ, Martin PETKOVŠEK, et al. Application of (super)cavitation for the recycling of process waters in paper producing industry[J]. Ultrasonics Sonochemistry, 2020, 64: 105002. |
88 | KOSEL Janez, Andrej ŠINKOVEC, DULAR Matevž. A novel rotation generator of hydrodynamic cavitation for the fibrillation of long conifer fibers in paper production[J]. Ultrasonics Sonochemistry, 2019, 59: 104721. |
89 | SUN Xun, JIA Xiaoqi, LIU Jingting, et al. Investigation on the characteristics of an advanced rotational hydrodynamic cavitation reactor for water treatment[J]. Separation and Purification Technology, 2020, 251: 117252. |
90 | Jurij GOSTIŠA, Brane ŠIROK, REPINC Sabina Kolbl, et al. Performance evaluation of a novel pilot-scale pinned disc rotating generator of hydrodynamic cavitation[J]. Ultrasonics Sonochemistry, 2021, 72: 105431. |
91 | BADVE Mandar P, ALPAR Tibor, PANDIT Aniruddha B, et al. Modeling the shear rate and pressure drop in a hydrodynamic cavitation reactor with experimental validation based on KI decomposition studies[J]. Ultrasonics Sonochemistry, 2015, 22: 272-277. |
92 | 刘影, 李先林, 陈泰然, 等. 内孔式旋转空化发生器的数值计算研究[J]. 北京理工大学学报, 2017, 37(1): 1-4, 14. |
LIU Ying, LI Xianlin, CHEN Tairan, et al. Numerical study on the cavitating flow in a rotary cavitation generator[J]. Transactions of Beijing Institute of Technology, 2017, 37(1): 1-4, 14. | |
93 | 王勇, 严骏, 王健, 等. 转子-定子型离心式水力空化发生器非定常空化形成机制[J]. 哈尔滨工程大学学报, 2018, 39(12): 1887-1893. |
WANG Yong, YAN Jun, WANG Jian, et al. Unsteady cavitation patterns in a rotor-stator centrifugal hydrodynamic cavitation generator[J]. Journal of Harbin Engineering University, 2018, 39(12): 1887-1893. | |
94 | SUN Xun, XUAN Xiaoxu, SONG Yongxing, et al. Experimental and numerical studies on the cavitation in an advanced rotational hydrodynamic cavitation reactor for water treatment[J]. Ultrasonics Sonochemistry, 2021, 70: 105311. |
[1] | CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978. |
[2] | WANG Zizong, LIU Gang, WANG Zhenwei. Progress and reflection on process intensification technology for ethylene/propylene production [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1669-1676. |
[3] | XIAO Zhourong, LI Guozhu, WANG Li, ZHANG Xiangwen, GU Jianmin, WANG Desong. Research progress of the catalysts for hydrogen production via liquid hydrocarbon fuels steam reforming [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 97-107. |
[4] | YAN Peng, CHENG Yi. Numerical simulation of membrane reactor of methane steam reforming for distributed hydrogen production [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3446-3454. |
[5] | SHI Yici, PAN Yanqiu, WANG Chengyu, FAN Jiahe, YU Lu. Experimental investigations on Joule effect enhanced air gap membrane distillation for water desalination [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2285-2291. |
[6] | SONG Fei, WANG Junyan, HE Lin, SUI Hong, LI Xingang. Surfactant enhancement of bubbling for separation of residual solvent from oil sands residue after solvent extraction [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2007-2014. |
[7] | WANG Yuhan, SHEN Chong, SU Yuanhai. Fundamentals and research progress of photochemical microreaction technology [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4749-4761. |
[8] | WANG Xiaoda, CHEN Yu, WANG Qinglian, HUANG Zhixian, YANG Chen, WANG Hongxing, QIU Ting. Review on etherification by reactive distillation [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1797-1811. |
[9] | QIAN Jiayi, XIAO Jianjun, SUN Lin, YANG Haiping, WANG Xianhua, CHEN Yingquan, CHEN Hanping. Research progress on process intensification in hydrolysis of biomass into 5-hydroxymethylfurfural in biphasic solvent systems [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6054-6060. |
[10] | WANG Ben, WANG Chao, YIN Jinhua. Continuous-flow diazotization of methyl anthranilate in microreactor system [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5678-5691. |
[11] | Wenbo ZHAO, Guangzhen LI, Shengchao XU, Xuefei LI, Zhiyou WANG. Recent developments of acid gas absorption by phase-change [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 401-414. |
[12] | Boren TAN, Longxiang LI, Yong WANG, Tao QI. Progress of solvent extraction column model and process intensification [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2284-2293. |
[13] | Zhenyu ZHAO, Hong LI, Xingang LI, Xin GAO. Microwave-induced enhancement of distillation separation based on dielectric properties difference [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2275-2283. |
[14] | Lei SHENG, Linghan TUO, Xiaobin JIANG, Gaohong HE. Novel antisolvent crystallization and process intensification via the accurate mass transfer control of the organic membrane [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1692-1700. |
[15] | Yanli QU, Yuejia JIANG, Jingcai CHENG, Chao YANG. Advances in process intensification and numerical simulation of reactive and antisolvent crystallizations [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4970-4982. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |