Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (4): 2132-2139.DOI: 10.16085/j.issn.1000-6613.2021-0757
• Resources and environmental engineering • Previous Articles Next Articles
WU Jiajia1(), PAN Zhen1(), SHANG Liyan2, SUN Xiuli2, SUN Chao3, SUN Xiangguang4
Received:
2021-04-12
Revised:
2021-07-02
Online:
2022-04-25
Published:
2022-04-23
Contact:
PAN Zhen
吴佳佳1(), 潘振1(), 商丽艳2, 孙秀丽2, 孙超3, 孙祥广4
通讯作者:
潘振
作者简介:
吴佳佳(1997—),女,硕士研究生,研究方向为天然气综合利用。E-mail:基金资助:
CLC Number:
WU Jiajia, PAN Zhen, SHANG Liyan, SUN Xiuli, SUN Chao, SUN Xiangguang. Characteristics of CO2 absorption by N,N-dimethylethanolamine (DMEA) in hollow fiber membrane contactor[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2132-2139.
吴佳佳, 潘振, 商丽艳, 孙秀丽, 孙超, 孙祥广. 中空纤维膜接触器中N,N-二甲基乙醇胺吸收CO2的特性[J]. 化工进展, 2022, 41(4): 2132-2139.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0757
参数 | 数值 |
---|---|
纤维内径r1/μm | 172 |
纤维外径r2/μm | 221 |
膜接触器半径r3/μm | 478 |
纤维长度L/m | 0.8 |
膜孔径dp/μm | 0.02 |
纤维数量N | 7000 |
膜孔隙率ε/% | 45 |
薄膜弯曲度τ | 2 |
有效膜面积S/m2 | 6.05 |
参数 | 数值 |
---|---|
纤维内径r1/μm | 172 |
纤维外径r2/μm | 221 |
膜接触器半径r3/μm | 478 |
纤维长度L/m | 0.8 |
膜孔径dp/μm | 0.02 |
纤维数量N | 7000 |
膜孔隙率ε/% | 45 |
薄膜弯曲度τ | 2 |
有效膜面积S/m2 | 6.05 |
位置 | 管程 | 膜 | 壳程 |
---|---|---|---|
z=0 | |||
z=L | |||
r=0 | |||
r=r1 | |||
r=r2 |
位置 | 管程 | 膜 | 壳程 |
---|---|---|---|
z=0 | |||
z=L | |||
r=0 | |||
r=r1 | |||
r=r2 |
参数 | CO2-MEA | CO2-DEA | CO2-MDEA | CO2-DMEA | 参考文献 |
---|---|---|---|---|---|
壳程传质速率/m2·s-1 | 1.8×10-5 | [ | |||
膜内传质速率/m2·s-1 | 1.8×10-5(ε/τ) | [ | |||
气体常数/m3·atm-1·mol-1·K-1 | 8.314 | [ | |||
亨利常数/mol·mol-1 | 0.86 | 0.8 | 0.798 | 0.763 | [ |
管程传质速率/m2·s-1 | 1.29×10-9 | 1.05×10-9 | 1.11×10-9 | 9.2×10-10 | [ |
管程液相传质速率/m2·s-1 | 7.71×10-10 | 4.97×10-10 | 4.58×10-10 | 5.8×10-10 | [ |
CO2与吸收剂反应速率/m3·mol-1·s-1 | 6.244 | 5.814 | 5.259 | 22.911 | [ |
参数 | CO2-MEA | CO2-DEA | CO2-MDEA | CO2-DMEA | 参考文献 |
---|---|---|---|---|---|
壳程传质速率/m2·s-1 | 1.8×10-5 | [ | |||
膜内传质速率/m2·s-1 | 1.8×10-5(ε/τ) | [ | |||
气体常数/m3·atm-1·mol-1·K-1 | 8.314 | [ | |||
亨利常数/mol·mol-1 | 0.86 | 0.8 | 0.798 | 0.763 | [ |
管程传质速率/m2·s-1 | 1.29×10-9 | 1.05×10-9 | 1.11×10-9 | 9.2×10-10 | [ |
管程液相传质速率/m2·s-1 | 7.71×10-10 | 4.97×10-10 | 4.58×10-10 | 5.8×10-10 | [ |
CO2与吸收剂反应速率/m3·mol-1·s-1 | 6.244 | 5.814 | 5.259 | 22.911 | [ |
1 | 贠莹, 高峰. 天然气脱硫脱碳工艺技术进展[J]. 化工管理, 2020(19): 168-171. |
YUN Ying, GAO Feng. Technology progress of natural gas desulfurization and decarbonization[J]. Chemical Enterprise Management, 2020(19): 168-171. | |
2 | 李同川. 天然气脱碳处理工艺的原理分析[J]. 石化技术, 2016, 23(5): 20, 49. |
LI Tongchuan. Principle analysis of natural gas decarbonization process [J]. Petrochemical Industry Technology, 2016, 23(5): 20, 49. | |
3 | 王秋华, 张卫风, 方梦祥, 等. 我国膜吸收法分离烟气中CO2的研究进展[J]. 环境科学与技术, 2009, 32(7): 68-74. |
WANG Qiuhua, ZHANG Weifeng, FANG Mengxiang, et al. Separation of CO2 in flue gas by membrane absorption in China[J]. Environmental Science & Technology, 2009, 32(7): 68-74. | |
4 | RAHMAWATI Y, NURKHAMIDAH S, SUSIANTO S, et al. Effect of activated alkanolamine for CO2 absorption using hollow fiber membrane contactor[J]. IOP Conference Series: Materials Science and Engineering, 2019, 543: 012080. |
5 | ABOUDHEIR A, TONTIWACHWUTHIKUL P, CHAKMA A, et al. Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions[J]. Chemical Engineering Science, 2003, 58(23/24): 5195-5210. |
6 | ANSALONI L, RENNEMO R, KNUUTILA H K, et al. Development of membrane contactors using volatile amine-based absorbents for CO2 capture: amine permeation through the membrane[J]. Journal of Membrane Science, 2017, 537: 272-282. |
7 | 陈杰, 郭清, 花亦怀, 等. MDEA+MEA/DEA混合胺液脱碳性能实验研究[J]. 天然气工业, 2014, 34(5): 137-143. |
CHEN Jie, GUO Qing, HUA Yihuai, et al. An experimental study of absorption and desorption of blended amine solutions MDEA+MEA/DEA for natural gas decarburization[J]. Natural Gas Industry, 2014, 34(5): 137-143. | |
8 | 张卫风, 马伟春, 邱雪霏. MDEA-PG吸收剂联合中空纤维膜接触器脱除烟气中CO2 [J]. 应用化工, 2018, 47(2): 302-305, 311. |
ZHANG Weifeng, MA Weichun, QIU Xuefei. Removal of CO2 from flue gas by MDEA-PG absorbent combined with hollow fiber membrane contactor[J]. Applied Chemical Industry, 2018, 47(2): 302-305, 311. | |
9 | YAN S P, FANG M X, ZHANG W F, et al. Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting[J]. Fuel Processing Technology, 2007, 88(5): 501-511. |
10 | NAKHJIRI A T, HEYDARINASAB A, BAKHTIARI O, et al. Experimental investigation and mathematical modeling of CO2 sequestration from CO2/CH4 gaseous mixture using MEA and TEA aqueous absorbents through polypropylene hollow fiber membrane contactor[J]. Journal of Membrane Science, 2018, 565: 1-13. |
11 | 曹帆. 中空纤维膜接触器内有机胺溶液吸收CO2传质性能的实验与模拟研究[D]. 长沙: 湖南大学, 2019. |
CAO Fan. Experimental and theoretical studies on mass transfer performance for CO2 absorption into aqueous amine solution in hollow fiber membrane contactor[D]. Changsha: Hunan University, 2019. | |
12 | ZHANG Z E, CHEN F, REZAKAZEMI M, et al. Modeling of a CO2-piperazine-membrane absorption system[J]. Chemical Engineering Research and Design, 2018, 131: 375-384. |
13 | TANTIKHAJORNGOSOL P, LAOSIRIPOJANA N, JIRARATANANON R, et al. Physical absorption of CO2 and H2S from synthetic biogas at elevated pressures using hollow fiber membrane contactors: the effects of Henry's constants and gas diffusivities[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1136-1148. |
14 | CAO F, GAO H X, LI H P, et al. Experimental and theoretical studies on mass transfer performance for CO2 absorption into aqueous N,N-dimethylethanolamine solution in the polytetrafluoroethylene hollow-fiber membrane contactor[J]. Industrial & Engineering Chemistry Research, 2018, 57(49): 16862-16874. |
15 | FAIZ R, LI K, AL-MARZOUQI M. H2S absorption at high pressure using hollow fibre membrane contactors[J]. Chemical Engineering and Processing: Process Intensification, 2014, 83: 33-42. |
16 | NAKHJIRI A T, HEYDARINASAB A. Computational simulation and theoretical modeling of CO2 separation using EDA, PZEA and PS absorbents inside the hollow fiber membrane contactor[J]. Journal of Industrial and Engineering Chemistry, 2019, 78: 106-115. |
17 | ESLAMI S, MOUSAVI S M, DANESH S, et al. Modeling and simulation of CO2 removal from power plant flue gas by PG solution in a hollow fiber membrane contactor[J]. Advances in Engineering Software, 2011, 42(8): 612-620. |
18 | SHIRAZIAN S, PISHNAMAZI M, REZAKAZEMI M, et al. Implementation of the finite element method for simulation of mass transfer in membrane contactors[J]. Chemical Engineering & Technology, 2012, 35(6): 1077-1084. |
19 | JIN P R, HUANG C, SHEN Y D, et al. Simultaneous separation of H2S and CO2 from biogas by gas-liquid membrane contactor using single and mixed absorbents[J]. Energy & Fuels, 2017, 31(10): 11117-11126. |
20 | LIU H L, LUO X, LIANG Z W, et al. Determination of vapor-liquid equilibrium (VLE) plots of 1-dimethylamino-2-propanol solutions using the pH method[J]. Industrial & Engineering Chemistry Research, 2015, 54(17): 4709-4716. |
21 | 陆诗建, 李清方, 张建. 醇胺溶液吸收二氧化碳方法及反应原理概述[J]. 科技创新导报, 2009, 6(13): 4-5, 7. |
LU Shijian, LI Qingfang, ZHANG Jian. Overview of CO2 absorption with organic amines solution and reaction theory[J]. Science and Technology Innovation Herald, 2009, 6(13): 4-5, 7. | |
22 | MANEEINTR K, LUEMUNKONG T, CHARINPANITKUL T. Vapor-liquid equilibrium of carbon dioxide in a 5m aqueous solution of 2-(dimethylamino) ethanol[C]// Computers and Advanced Technology in Education/820: Modelling, Simulation and Identification/ 821: Environmental Management and Engineering. Banff, Canada. Calgary, AB, Canada: ACTAPRESS, 2014: 148-151. |
23 | ZHANG N, PAN Z, ZHANG L, et al. Decarburization characteristics of coalbed methane by membrane separation technology[J]. Fuel, 2019, 242: 470-478. |
24 | 孙承贵, 曹义鸣, 介兴明, 等. 中空纤维致密膜基吸收CO2传质机理分析[J]. 高校化学工程学报, 2007, 21(4): 556-562. |
SUN Chenggui, CAO Yiming, Xingming JIE, et al. Mass transfer mechanism of CO2 absorption through a non-porous hollow fiber contactor[J]. Journal of Chemical Engineering of Chinese Universities, 2007, 21(4): 556-562. | |
25 | NWAOHA C, TONTIWACHWUTHIKUL P, BENAMOR A. CO2 capture from water-gas shift process plant: comparative bench-scale pilot plant investigation of MDEA-PZ blend vs novel MDEA activated by 1,5-diamino-2-methylpentane[J]. International Journal of Greenhouse Gas Control, 2019, 82: 218-228. |
26 | FAIZ R, AL-MARZOUQI M. Mathematical modeling for the simultaneous absorption of CO2 and H2S using MEA in hollow fiber membrane contactors[J]. Journal of Membrane Science, 2009, 342(1/2): 269-278. |
27 | YAN Y F, ZHANG Z E, ZHANG L, et al. Dynamic modeling of biogas upgrading in hollow fiber membrane contactors[J]. Energy & Fuels, 2014, 28(9): 5745-5755. |
28 | CAO F, GAO H X, LI H P, et al. Experimental and theoretical studies on mass transfer performance for CO2 absorption into aqueous N,N-dimethylethanolamine solution in the polytetrafluoroethylene hollow-fiber membrane contactor[J]. Industrial & Engineering Chemistry Research, 2018, 57(49): 16862-16874. |
29 | CAO F, GAO H X, LING H, et al. Theoretical modeling of the mass transfer performance of CO2 absorption into DEAB solution in hollow fiber membrane contactor[J]. Journal of Membrane Science, 2020, 593: 117439. |
30 | ZHANG Z E, YAN Y F, ZHANG L, et al. Theoretical study on CO2 absorption from biogas by membrane contactors: effect of operating parameters[J]. Industrial & Engineering Chemistry Research, 2014, 53(36): 14075-14083. |
31 | 袁娅. PVDF疏水膜润湿进程控制[D]. 天津: 天津工业大学, 2017. |
YUAN Ya. Control of wetting process of PVDF hydrophobic membrane[D]. Tianjin: Tianjin Polytechnic University, 2017. | |
32 | 罗双江, 白璐, 单玲珑, 等. 膜法二氧化碳分离技术研究进展及展望[J]. 中国电机工程学报, 2021, 41(4): 1209-1216, 1527. |
LUO Shuangjiang, BAI Lu, SHAN Linglong, et al. Research progress and prospect in membrane-mediated CO2 separation[J]. Proceedings of the CSEE, 2021, 41(4): 1209-1216, 1527. | |
33 | YAN S P, HE Q Y, ZHAO S F, et al. Biogas upgrading by CO2 removal with a highly selective natural amino acid salt in gas-liquid membrane contactor[J]. Chemical Engineering and Processing: Process Intensification, 2014, 85: 125-135. |
[1] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[2] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[3] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[4] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[5] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[6] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[7] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[8] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[9] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[10] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[11] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[12] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[13] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[14] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[15] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |