Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 816-826.DOI: 10.16085/j.issn.1000-6613.2021-0589
• Materials science and technology • Previous Articles Next Articles
SONG Zihao1,2, WANG Hongxin1, DU Boyu1, DUAN Qiuyang1, LU Jinghong1, JIANG Yinghui1, CUI Sheng1,2,3
Received:
2021-03-23
Revised:
2021-04-21
Online:
2022-02-23
Published:
2022-02-05
Contact:
CUI Sheng
宋梓豪1,2, 王宏鑫1, 杜博宇1, 段秋阳1, 卢晶虹1, 江颖辉1, 崔升1,2,3
通讯作者:
崔升
作者简介:
宋梓豪(1996—),男,硕士研究生,研究方向为气凝胶材料。E-mail:zsong@njtech. edu. cn。
基金资助:
CLC Number:
SONG Zihao, WANG Hongxin, DU Boyu, DUAN Qiuyang, LU Jinghong, JIANG Yinghui, CUI Sheng. Progress in preparation and performance application of polyimide aerogel[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 816-826.
宋梓豪, 王宏鑫, 杜博宇, 段秋阳, 卢晶虹, 江颖辉, 崔升. 聚酰亚胺气凝胶制备、性能及应用进展[J]. 化工进展, 2022, 41(2): 816-826.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0589
1 | SROOG C E. Polyimides[J]. Progress in Polymer Science, 1991, 16(4): 561-694. |
2 | JIAN S J, LIU S W, CHEN L L, et al. Nano-boria reinforced polyimide composites with greatly enhanced thermal and mechanical properties via in-situ thermal conversion of boric acid[J]. Composites Communications, 2017, 3: 14-17. |
3 | WILLIAMS J C, NGUYEN B N, MCCORKLE L, et al. Highly porous, rigid-rod polyamide aerogels with superior mechanical properties and unusually high thermal conductivity[J]. ACS Appliwd Materials & Interfaces, 2017, 9(2): 1801-1809. |
4 | PIERRE A C, PAJONK GÉRARD M. Chemistry of aerogels and their applications[J]. Chemical Reviews, 2002, 102(11): 4243-4265. |
5 | SALIMIAN S, ZADHOUSH A, NAEIMIRAD M, et al. A review on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites[J]. Polymer Composites, 2018, 39(10): 3383-3408. |
6 | WICKLEIN B, KOCJAN A, SALAZAR-ALVAREZ G, et al. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide[J]. Nature Nanotechnology, 2015, 10(3): 277-283. |
7 | SI Y, YU J Y, TANG X M, et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality[J]. Nature Communications, 2014, 5(1): 5802. |
8 | ZUO L, ZHANG Y, ZHANG L, et al. Polymer/carbon-based hybrid aerogels: preparation, properties and applications[J]. Materials, 2015, 8(10): 6806-6848. |
9 | JIANG S H, UCH B, AGARWAL S, et al. Ultralight, thermally insulating, compressible polyimide fiber assembled sponges[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 32308-32315. |
10 | RHINE Wendell, WANG Jing, BEGAG Redouane. Production of polyimide aerogel for carbon aerogel, involves contacting diamine and aromatic dianhydride monomers in solvent, contacting resulting poly(amic acid) with dehydrating agent, and drying resulting polyimide gel: US0132845[P]. 2004-07-08. |
11 | MA C B, DU B J, WANG E K. Self-crosslink method for a straightforward synthesis of poly(vinyl alcohol)-based aerogel assisted by carbon nanotube[J]. Advanced Functional Materials, 2017, 27(10): 1604423. |
12 | NGUYEN B N, CUDJOE E, DOUGLAS A, et al. Polyimide cellulose nanocrystal composite aerogels[J]. Macromolecules, 2016, 49(5): 1692-1703. |
13 | KUROSAWA T, HIGASHIHARA T, UEDA M. Polyimide memory: a pithy guideline for future applications[J]. Polymer Chemistry, 2013, 4(1): 16-30. |
14 | KAWAGISHI K, SAITO H, FURUKAWA H, et al. Superior nanoporous polyimides via supercritical CO2 drying of jungle-gym-type polyimide gels[J]. Macromolecular Rapid Communications, 2007, 28(1):96-100. |
15 | GUO H, MEADOR M A B, MCCORKLE L, et al. Correction to tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5422-5429. |
16 | MEADOR M A, MALOW E J, SILVA R, et al. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine[J]. ACS Applied Materials & Interfaces, 2012, 4(2):536-544. |
17 | MEADOR M A B, ALEMÁN C R, HANSON K, et al. Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels[J]. ACS Applied Materials & Interfaces, 2015, 7(2):1240-1249. |
18 | NGUYEN B N, MEADOR M A B, SCHEIMAN D, et al. Polyimide aerogels using tri-isocyanate as cross-linker[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 27313-27321. |
19 | GUO H Q, MEADOR M A B, MCCORKLE L S, et al. Poly(maleic anhydride) cross-linked polyimide aerogels: synthesis and properties[J]. RSC Advances, 2016, 6(31):26055-26065. |
20 | ZHANG B, WU P, ZOU H W, et al. Morphology and properties of polyimide/multi-walled carbon nanotubes composite aerogels[J]. High Performance Polymers, 2018, 30(3): 292-302. |
21 | GUO H Q, MEADOR M A B, CASHMAN J L, et al. Flexible polyimide aerogels with dodecane links in the backbone structure[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 33288-33296. |
22 | GHAFFARI MOSANENZADEH S, ALSHRAH M, SAADATNIA Z, et al. Double dianhydride backbone polyimide aerogels with enhanced thermal insulation for high-temperature applications[J]. Macromolecular Materials and Engineering, 2020, 305(4): 1900777. |
23 | PEI D X, LYU B, WANG J H, et al. Structure and properties of polyimide aerogels with different skeleton flexibilities[J]. Soft Materials, 2021, 19(1): 50-55. |
24 | 彭黎莹, 王怡星, 吉剑奇, 等. 冷冻干燥制备聚酰亚胺气凝胶微观形态的调控[J]. 高分子材料科学与工程, 2018, 34(9): 115-119. |
PENG Liying, WANG Yixing, JI Jianqi, et al. Control of microstructure of polyimide aerogel prepared by freeze-drying[J]. Polymer Materials Science & Engineering, 2018, 34(9): 115-119. | |
25 | DAI T W, YU Z, YUAN S W, et al. Gradient structure polyimide/graphene composite aerogels fabricated by layer-by-layer assembly and unidirectional freezing[J]. Journal of Applied Polymer Science, 2021, 138(14): 50153. |
26 | Carolina SIMÓN-HERRERO, CHEN X Y, ORTIZ M L, et al. Linear and crosslinked polyimide aerogels: synthesis and characterization[J]. Journal of Materials Research and Technology, 2019, 8(3):2638-2648. |
27 | CHIDAMBARESWARAPATTAR C, LARIMORE Z, SOTIRIOU-LEVENTIS C, et al. One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons[J]. Journal of Materials Chemistry, 2010, 20(43): 9666. |
28 | CHIDAMBARESWARAPATTAR C, XU L, SOTIRIOU-LEVENTIS C, et al. Robust monolithic multiscale nanoporous polyimides and conversion to isomorphic carbons[J]. RSC Advances, 2013, 3(48): 26459. |
29 | BIELAWSKI C W, GRUBBS R H. Living ring-opening metathesis polymerization[J]. Progress in Polymer Science, 2007, 32(1): 1-29. |
30 | LEVENTIS N, SOTIRIOU-LEVENTIS C, MOHITE D P, et al. Polyimide aerogels by ring-opening metathesis polymerization (ROMP)[J]. Chemistry of Materials, 2011, 23(8): 2250-2261. |
31 | 刘韬, 李文静, 张恩爽, 等. 柔性交联型聚酰亚胺气凝胶的制备及性能[J]. 高等学校化学学报, 2019, 40(2): 403-409. |
LIU Tao, LI Wenjing, ZHANG Enshuang, et al. Preparation and properties of flexide cross-linked polyimide aerogels[J]. Chemical Journal of Chinese Universities, 2019, 40(2): 403-409. | |
32 | ZHANG X, ZHAO X Y, XUE T T, et al. Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation[J]. Chemical Engineering Journal, 2020, 385:123963. |
33 | ZHU Z X, YAO H J, WANG F, et al. Fiber reinforced polyimide aerogel composites with high mechanical strength for high temperature insulation[J]. Macromolecular Materials and Engineering, 2019, 304(5): 1800676. |
34 | WEI F, ZHANG X, ZHANG Y, et al. Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature[J]. Composites Science and Technology, 2019, 173:47-52. |
35 | HOU X B, ZHANG R B, FANG D N. Flexible, fatigue resistant, and heat-insulated nanofiber-assembled polyimide aerogels with multifunctionality[J]. Polymer Testing, 2020, 81:106246. |
36 | ZHANG X H, NI X X, LI C X, et al. Co-gel strategy for preparing hierarchically porous silica/polyimide nanocomposite aerogel with thermal insulation and flame retardancy[J]. Journal of Materials Chemistry A, 2020, 8(19): 9701-9712. |
37 | 圣冬冬, 王海涛, 应振华. 热塑性聚酰亚胺复合材料在航空航天中的应用[J]. 塑料, 2013, 42(4): 46-48. |
SHENG Dongdong, WANG Haitao, YING Zhenhua. Application of thermoplastic polyimide composite materials in aerospace field[J]. Plastics, 2013, 42(4): 46-48. | |
38 | 陈辉, 丁春风. 一种新型航空航天用电线-聚酰亚胺复合薄膜/聚四氟乙烯组合绝缘电线[J]. 电子技术, 2012, 39(2): 68-71. |
CHEN Hui, DING Chunfeng. A new aerospace wire-polyimide composite film/PTFE composite insulated wire [J]. Electronic Technology, 2012, 39(2): 68-71. | |
39 | PLIS E A, ENGELHART D P, COOPER R, et al. Review of radiation-induced effects in polyimide[J]. Applied Sciences, 2019, 9(10):1999. |
40 | LIANG F R, LIU W J, ZHANG S H, et al. Preparation and properties of anti-infrared transparent thermal-insulating film based on polymethyl methacrylate[J]. Energy, 2020, 194:116848. |
41 | WU Y, JU D D, LIU Y, et al. Evaluation of radiation damage behavior in polyimide aerogel by infrared camera and photoacoustic spectroscopy[J]. Polymer Testing, 2020, 85: 106405. |
42 | COOPER R, FERGUSON D, ENGELHART D P, et al. Effects of radiation damage on polyimide resistivity[J]. Journal of Spacecraft and Rockets, 2016, 54(2): 343-348. |
43 | YU Z, DAI T W, YUAN S W, et al. Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30990-31001. |
44 | WU P, ZHANG B, YU Z, et al. Anisotropic polyimide aerogels fabricated by directional freezing[J]. Journal of Applied Polymer Science, 2019, 136(11): 47179. |
45 | 吴斌, 张秋华, 陈文军, 等. 具有抗红外辐射特性的聚酰亚胺气凝胶的制备及其性能的研究[J]. 化工管理, 2017(2): 66, 68. |
WU Bin, ZHANG Qiuhua, CHEN Wenjun, et al. Study on the preparation and performance of polyimide aerogel with anti-infrared radiation [J]. Chemical Enterprise Management, 2017(2): 66, 68. | |
46 | CHERKASHINA N I, PAVLENKO V I, NOSKOV A V. Radiation shielding properties of polyimide composite materials[J]. Radiation Physics and Chemistry, 2019, 159:111-117. |
47 | CHERKASHINA N I, PAVLENKO A V. Synthesis of polymer composite based on polyimide and Bi12SiO20 sillenite[J]. Polymer-Plastics Technology and Engineering, 2018, 57(18): 1923-1931. |
48 | LI X, WANG J, ZHAO Y B, et al. Superhydrophobic polyimide aerogels via conformal coating strategy with excellent underwater performances[J]. Journal of Applied Polymer Science, 2020, 137(26): 48849. |
49 | QIAO S Y, KANG S, HU Z M, et al. Moisture-resistance, mechanical and thermal properties of polyimide aerogels[J]. Journal of Porous Materials, 2020, 27(1): 237-247. |
50 | GUO H, MEADOR M A, MCCORKLE L, et al. Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane[J]. ACS Applied Materials & Interfaces, 2011, 3(2): 546-552. |
51 | 厉旭, 裴学良. 基于聚硅氧烷疏水改性聚酰亚胺气凝胶[J]. 功能材料, 2019, 50(10): 10018-10022, 10026. |
LI Xu, PEI Xueliang. Improving the hydrophobicity of polyimide aerogel via polysiloxane[J]. Journal of Functional Materials, 2019, 50(10): 10018-10022, 10026. | |
52 | ZHANG Y, KANG E T, NEOH K G, et al. Surface modification of polyimide films via plasma polymerization and deposition of allylpentafluorobenzene[J]. Polymer, 2002, 43(26): 7279-7288. |
53 | WU Z L, HAN B C, ZHANG C H, et al. Preparation and characterization of highly hydrophobic fluorinated polyimide aerogels cross-linked with 2,2′,7,7′-tetraamino-9,9′-spirobifluorene[J]. Polymer, 2019, 179: 121605. |
54 | LI X, WANG J, ZHAO Y B, et al. Template-free self-assembly of fluorine-free hydrophobic polyimide aerogels with lotus or petal effect[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16901-16910. |
55 | YANG F, ZHAO X, XUE T, et al. Superhydrophobic polyvinylidene fluoride/polyimide nanofiber composite aerogels for thermal insulation under extremely humid and hot environment[J]. Science China Materials, 2021, 64(5): 1267-1277. |
56 | LIAW D J, WANG K L, HUANG Y C, et al. Advanced polyimide materials: syntheses, physical properties and applications[J]. Progress in Polymer Science, 2012, 37(7): 907-974. |
57 | WANG Y X, HE T J, LIU M Y, et al. Fast and efficient oil-water separation under harsh conditions of the flexible polyimide aerogel containing benzimidazole structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581: 123809. |
58 | WANG N N, WANG H, WANG Y Y, et al. Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40512-40523. |
59 | REN R P, WANG Z, REN J, et al. Highly compressible polyimide/graphene aerogel for efficient oil/water separation[J]. Journal of Materials Science, 2019, 54(7): 5918-5926. |
60 | ZHAI C, JANA S C. Tuning porous networks in polyimide aerogels for airborne nanoparticle filtration[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 30074-30082. |
61 | QIAO S Y, ZHANG H, KANG S, et al. Hydrophobic, pore-tunable polyimide/polyvinylidene fluoride composite aerogels for effective airborne particle filtration[J]. Macromolecular Materials and Engineering, 2020, 305(8): 2000129. |
62 | MOSANENZADEH S G, KARAMIKAMKAR S, SAADATNIA Z, et al. PPDA-PMDA polyimide aerogels with tailored nanostructure assembly for air filtering applications[J]. Separation and Purification Technology, 2020, 250: 117279. |
63 | QIAN Z C, WANG Z, CHEN Y, et al. Superelastic and ultralight polyimide aerogels as thermal insulators and particulate air filters[J]. Journal of Materials Chemistry A, 2018, 6(3): 828-832. |
64 | MOSANENZADEH S G, SAADATNIA Z, KARAMIKAMKAR S, et al. Polyimide aerogels with novel bimodal micro and nano porous structure assembly for airborne nano filtering applications[J]. RSC Advances, 2020, 10(39): 22909-22920. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[3] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[4] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[5] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[6] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
[7] | SUN Xudong, ZHAO Yuying, LI Shirui, WANG Qi, LI Xiaojian, ZHANG Bo. Textual quantitative analysis on China’s local hydrogen energy development policies [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478-3488. |
[8] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[9] | REN Jianpeng, WU Caiwen, LIU Huijun, WU Wenjuan. Preparation of lignin-polyaniline composites and adsorption of Congo red [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3087-3096. |
[10] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
[11] | JIN Yong, CHENG Yi, BAI Dingrong, ZHANG Chenxi, WEI Fei. Fluidization research and development in China [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2761-2780. |
[12] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[13] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
[14] | LI Jianxiong, GENG Shuang, HU Shujian, ZHOU Ming. Research progress on functional structure design and application of liposome delivery system [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2003-2012. |
[15] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |