Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (4): 2017-2030.DOI: 10.16085/j.issn.1000-6613.2023-0528
• Fine chemicals • Previous Articles
QI Yabing1(), WU Zibo2, YANG Qingcui1
Received:
2023-04-06
Revised:
2023-06-12
Online:
2024-05-13
Published:
2024-04-15
Contact:
QI Yabing
通讯作者:
齐亚兵
作者简介:
齐亚兵(1983—),男,博士,讲师,研究方向为传质与分离技术。E-mail: qiyabing123@163.com; yabingqi@xauat.edu.cn。
基金资助:
CLC Number:
QI Yabing, WU Zibo, YANG Qingcui. Research advances of preparation of Pickering emulsions and their stability[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2017-2030.
齐亚兵, 吴子波, 杨清翠. Pickering乳液制备及稳定性研究进展[J]. 化工进展, 2024, 43(4): 2017-2030.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0528
乳化法分类 | 优点 | 缺点 | 应用情况 |
---|---|---|---|
转子-定子匀浆法 | 操作简单、成本低、乳液制备速度快、易于放大 | 乳液温度升高多,不适用于热敏型乳液制备;剪切力大、固体粒子破碎多;液滴尺寸大且分布范围广 | 广泛应用于工业规模乳液的制备 |
超声乳化法 | 设备简单,能耗低,制乳速度快,可以制备较小尺寸的乳液 | 固体粒子破碎多,超声探头会污染料液,液滴尺寸分布范围广,液滴包封效果差、液滴呈多分散性;料液温升高,降低了热敏性粒子或乳液的稳定性;工业放大困难 | 在乳液制备领域有一定的工业规模应用 |
高压匀浆法 | 占地面积小、效率高、能量大、制乳速率快、制乳过程可连续操作、所得乳液液滴尺寸小 | 能耗高、操作费用较高、制乳器清洗困难、高压操作容易损坏固体乳化剂粒子 | 在乳液制备领域有一定的工业规模应用 |
微流控乳化法 | 乳化过程中对固体乳化剂粒子无明显的破碎 作用;可精确控制乳液滴的尺寸;过程可视化;液滴高度分散;能量消耗低,制乳成本低;乳化过程中无热量产生,有利于乳液的稳定 | 操作复杂、制乳效率低,液滴粒径较大;乳液与微通道之间有可能发生反应,在使用前一般需对微通道作表面处理;仅适用于低黏度流体的制乳,不适合高黏度流体制乳 | 目前微流控制乳技术还处于实验室研究阶段,未见大规模的工业应用 |
膜乳化法 | 操作简单、能耗低、表面活性剂用量少、操 作成本低,剪切力小、固体粒子破碎风险小,能制备尺寸小、分布均一的乳液,制备过程中无热量产生,可降低热敏型乳液不稳定的风险 | 乳液制备时间较长、产率低,膜孔易污染、清洗困难,乳液滴单分散性差,仅适用于低黏度乳液的制备 | 目前其仅处于实验室研究阶段,还不适合工业规模的放大 |
乳化法分类 | 优点 | 缺点 | 应用情况 |
---|---|---|---|
转子-定子匀浆法 | 操作简单、成本低、乳液制备速度快、易于放大 | 乳液温度升高多,不适用于热敏型乳液制备;剪切力大、固体粒子破碎多;液滴尺寸大且分布范围广 | 广泛应用于工业规模乳液的制备 |
超声乳化法 | 设备简单,能耗低,制乳速度快,可以制备较小尺寸的乳液 | 固体粒子破碎多,超声探头会污染料液,液滴尺寸分布范围广,液滴包封效果差、液滴呈多分散性;料液温升高,降低了热敏性粒子或乳液的稳定性;工业放大困难 | 在乳液制备领域有一定的工业规模应用 |
高压匀浆法 | 占地面积小、效率高、能量大、制乳速率快、制乳过程可连续操作、所得乳液液滴尺寸小 | 能耗高、操作费用较高、制乳器清洗困难、高压操作容易损坏固体乳化剂粒子 | 在乳液制备领域有一定的工业规模应用 |
微流控乳化法 | 乳化过程中对固体乳化剂粒子无明显的破碎 作用;可精确控制乳液滴的尺寸;过程可视化;液滴高度分散;能量消耗低,制乳成本低;乳化过程中无热量产生,有利于乳液的稳定 | 操作复杂、制乳效率低,液滴粒径较大;乳液与微通道之间有可能发生反应,在使用前一般需对微通道作表面处理;仅适用于低黏度流体的制乳,不适合高黏度流体制乳 | 目前微流控制乳技术还处于实验室研究阶段,未见大规模的工业应用 |
膜乳化法 | 操作简单、能耗低、表面活性剂用量少、操 作成本低,剪切力小、固体粒子破碎风险小,能制备尺寸小、分布均一的乳液,制备过程中无热量产生,可降低热敏型乳液不稳定的风险 | 乳液制备时间较长、产率低,膜孔易污染、清洗困难,乳液滴单分散性差,仅适用于低黏度乳液的制备 | 目前其仅处于实验室研究阶段,还不适合工业规模的放大 |
乳化剂粒子类型 | 优点 | 缺点 |
---|---|---|
无机固体粒子 | 来源广泛,制备过程较简单,应用范围广 | 无机固体粒子难以降解,对环境具有一定影响 |
有机固体粒子 | 材料来源较广,所制备乳液的稳定性好,易于制备智能响应性Pickering乳液 | 制备过程较复杂,技术成熟度不高 |
有机-无机复合固体粒子 | 乳液稳定性好,易于精确调控乳液性能,可实现物质精准输送或传递 | 制备过程较复杂,制备成本较高,复合固体粒子稳定性有待提高 |
Janus粒子 | 粒子分散性好,稳定性高,易于操控 | 制备过程较复杂,不能精确控制Janus粒子的形状,生产成本较高,难以实现规模化制备 |
乳化剂粒子类型 | 优点 | 缺点 |
---|---|---|
无机固体粒子 | 来源广泛,制备过程较简单,应用范围广 | 无机固体粒子难以降解,对环境具有一定影响 |
有机固体粒子 | 材料来源较广,所制备乳液的稳定性好,易于制备智能响应性Pickering乳液 | 制备过程较复杂,技术成熟度不高 |
有机-无机复合固体粒子 | 乳液稳定性好,易于精确调控乳液性能,可实现物质精准输送或传递 | 制备过程较复杂,制备成本较高,复合固体粒子稳定性有待提高 |
Janus粒子 | 粒子分散性好,稳定性高,易于操控 | 制备过程较复杂,不能精确控制Janus粒子的形状,生产成本较高,难以实现规模化制备 |
固体乳化剂 | Pickering乳液 | 用途 | 参考文献 | ||||
---|---|---|---|---|---|---|---|
制乳方式 | 水相 | 油相 | 类型 | 特征 | |||
水杨酸改性 纳米TiO2 | 匀浆法 | 杀虫剂NH水溶液 | CH2Cl2 | — | 乳液粒径0.58~1.43μm | 制备防蚊微胶囊 | [ |
纳米Fe3O4 | 匀浆法 | 水 | 十八烯基 琥珀酸酐 | O/W | 乳液粒径445.5~8027nm | 制备施胶乳液 | [ |
球磨重质碳酸钙粒子 | 匀浆法 | 超纯水 | 大豆油 | O/W | 乳液粒径(17.7±1.6)~(172.4±11.7)μm; 乳析指数9.5%~76.5% | 制备食品级碳酸钙 乳液 | [ |
十六烷基三甲基溴化铵改性坡缕石粒子 | 匀浆法 | 水 | 正十四烷、甲苯、煤油、柴油或原油 | O/W | 乳液粒径约30μm,改性后的坡缕石粒子油水 界面张力降低,粒子表面特征改变,且在连续相中形成了三维网络结构,有助于提高乳液的稳定性 | 制备Pickering乳液 凝胶 | [ |
六甲基二硅氮烷改性介孔中空SiO2微球 | 超声乳化法 | 去离子水 | 甲基丙烯酸甲酯和丙烯酸丁酯 | — | 小尺寸、小壳壁厚度微球,较大微球浓度,中 等疏水性和适宜油水比有利于提高Pickering乳液的稳定性 | — | [ |
氧化石墨烯 | 匀浆法 | 去离子水 | 石蜡 | — | 此氧化石墨烯Pickering相变材料乳液具有高导 热性和高稳定性 | 制备氧化石墨烯 Pickering相变材料乳液 | [ |
月桂酸改性 纳米ZnO | 匀浆法 | 水 | 液体石蜡 | — | 调节月桂酸用量可改变纳米氧化锌颗粒表面的 亲疏水性,部分亲水的纳米氧化锌颗粒(三相接触角40°~60°)具有最小乳液滴尺寸和最优稳定性 | 制备表面负载氧化 锌纳米颗粒的有机硅弹性微球 | [ |
改性硅藻土 粒子 | 匀浆法 | — | — | — | — | 制备复合物微球、 两亲性凝胶、絮凝材料 | [ |
蒙脱土、海藻酸钠 | 匀浆法 | 水 | 液体石蜡 | O/W | 海藻酸钠不仅使连续相变黏稠,在液滴周围形 成凝胶状环境;还可以修饰蒙脱土表面,协同增强液滴的静电力。通过pH和盐的各种刺激,可调节蒙脱土/海藻酸钠稳定乳液的流变性质 | 制备具有生物相容 性、多重刺激可调流变性Pickering乳液 | [ |
碳纳米管/MgO复合粒子 | 超声乳化法 | — | — | — | 以碳纳米管/MgO复合物制备的Pickering乳液在 高温、高盐条件下可稳定存在。此纳米复合物的加入显著降低了油水界面张力,并可改变多孔介质的润湿性由油润湿变为水润湿 | 此复合物粒子用 于多孔介质内的驱油 | [ |
固体乳化剂 | Pickering乳液 | 用途 | 参考文献 | ||||
---|---|---|---|---|---|---|---|
制乳方式 | 水相 | 油相 | 类型 | 特征 | |||
水杨酸改性 纳米TiO2 | 匀浆法 | 杀虫剂NH水溶液 | CH2Cl2 | — | 乳液粒径0.58~1.43μm | 制备防蚊微胶囊 | [ |
纳米Fe3O4 | 匀浆法 | 水 | 十八烯基 琥珀酸酐 | O/W | 乳液粒径445.5~8027nm | 制备施胶乳液 | [ |
球磨重质碳酸钙粒子 | 匀浆法 | 超纯水 | 大豆油 | O/W | 乳液粒径(17.7±1.6)~(172.4±11.7)μm; 乳析指数9.5%~76.5% | 制备食品级碳酸钙 乳液 | [ |
十六烷基三甲基溴化铵改性坡缕石粒子 | 匀浆法 | 水 | 正十四烷、甲苯、煤油、柴油或原油 | O/W | 乳液粒径约30μm,改性后的坡缕石粒子油水 界面张力降低,粒子表面特征改变,且在连续相中形成了三维网络结构,有助于提高乳液的稳定性 | 制备Pickering乳液 凝胶 | [ |
六甲基二硅氮烷改性介孔中空SiO2微球 | 超声乳化法 | 去离子水 | 甲基丙烯酸甲酯和丙烯酸丁酯 | — | 小尺寸、小壳壁厚度微球,较大微球浓度,中 等疏水性和适宜油水比有利于提高Pickering乳液的稳定性 | — | [ |
氧化石墨烯 | 匀浆法 | 去离子水 | 石蜡 | — | 此氧化石墨烯Pickering相变材料乳液具有高导 热性和高稳定性 | 制备氧化石墨烯 Pickering相变材料乳液 | [ |
月桂酸改性 纳米ZnO | 匀浆法 | 水 | 液体石蜡 | — | 调节月桂酸用量可改变纳米氧化锌颗粒表面的 亲疏水性,部分亲水的纳米氧化锌颗粒(三相接触角40°~60°)具有最小乳液滴尺寸和最优稳定性 | 制备表面负载氧化 锌纳米颗粒的有机硅弹性微球 | [ |
改性硅藻土 粒子 | 匀浆法 | — | — | — | — | 制备复合物微球、 两亲性凝胶、絮凝材料 | [ |
蒙脱土、海藻酸钠 | 匀浆法 | 水 | 液体石蜡 | O/W | 海藻酸钠不仅使连续相变黏稠,在液滴周围形 成凝胶状环境;还可以修饰蒙脱土表面,协同增强液滴的静电力。通过pH和盐的各种刺激,可调节蒙脱土/海藻酸钠稳定乳液的流变性质 | 制备具有生物相容 性、多重刺激可调流变性Pickering乳液 | [ |
碳纳米管/MgO复合粒子 | 超声乳化法 | — | — | — | 以碳纳米管/MgO复合物制备的Pickering乳液在 高温、高盐条件下可稳定存在。此纳米复合物的加入显著降低了油水界面张力,并可改变多孔介质的润湿性由油润湿变为水润湿 | 此复合物粒子用 于多孔介质内的驱油 | [ |
固体乳化剂 | Pickering乳液 | 用途 | 参考文献 | ||||
---|---|---|---|---|---|---|---|
制乳方式 | 水相 | 油相 | 类型 | 特征 | |||
超细化豆渣 | 匀浆法 | 去离子水 | 玉米油 | O/W | 乳液滴粒径:80~140μm的乳液,1~30d内乳析指数未发生明显变化。pH降低时乳液滴的平均粒径呈单调递减,乳液稳定性增强。水相中NaCl浓度对乳液粒径无显著影响 | 开发食品级Pickering乳液 | [ |
淀粉/玉米醇溶蛋白复合纳米粒子 | — | — | — | — | 纳米淀粉与玉米醇溶蛋通过静电作用和氢键络合形成淀粉/玉米醇溶蛋白复合纳米粒子,以此粒子为稳定剂制备出pH响应型 Pickering乳液 | 制备pH响应型Pickering乳液 | [ |
谷胶蛋白/乙基 纤维素复合粒子 | 匀浆法 | 水 | 玉米油 | W/O | 改变谷胶蛋白与乙基纤维素的比例,可调控粒子的粒径、接触角和动态界面张力等性能。在水的质量分数为55%时,乳液发生相转化,由W/O型转化为O/W型。以此复合粒子制备的乳液稳定性至少为433天 | — | [ |
壳聚糖/瓜尔豆胶纳米粒子 | 匀浆法 | — | 亚麻 籽油 | — | 通过pH调控壳聚糖/瓜尔豆胶纳米粒子的聚集度和表面电荷,从而制备出高品质的Pickering乳液。所得乳液在4℃下储存6个月后,最低的乳析指数为(1.81±0.21)% | 用于制备包埋虾青素的功能食品 | [ |
交联聚(4-乙烯吡啶)粒子 | — | — | — | — | 基于静电排斥作用的交联聚(4-乙烯吡啶)粒子拥有可变结构,使其具备了开关功能,通过控制pH和离子强度的大小,可方便地使乳液在稳定和失稳中转换 | — | [ |
疏水琼脂微凝胶 | — | — | — | — | 改性后的琼脂凝胶粒子的三相接触角可由大约60°变为96°。乳液中的微凝胶形成了凝胶网格或者其包裹于油滴的表面,为油滴提供了紧密的障碍,可防止油滴的聚并和奥斯瓦尔德熟化 | — | [ |
二醛纤维素纳米晶/明胶 | — | — | — | — | 二醛纤维素纳米晶表面的醛基与明胶表面的氨基发生Schiff碱反应,导致乳液界面强度和连续相中网络结构的增强,乳液流变性和稳定性获得明显改善 | — | [ |
酯化木质素粒子 | — | — | — | O/W | 与未改性的木质素粒子相比,经酯化改性的木质素粒子制备的Pickering乳液的乳液滴平均尺寸更小,zeta电位更高,流动性更好,因而稳定性更好 | — | [ |
固体乳化剂 | Pickering乳液 | 用途 | 参考文献 | ||||
---|---|---|---|---|---|---|---|
制乳方式 | 水相 | 油相 | 类型 | 特征 | |||
超细化豆渣 | 匀浆法 | 去离子水 | 玉米油 | O/W | 乳液滴粒径:80~140μm的乳液,1~30d内乳析指数未发生明显变化。pH降低时乳液滴的平均粒径呈单调递减,乳液稳定性增强。水相中NaCl浓度对乳液粒径无显著影响 | 开发食品级Pickering乳液 | [ |
淀粉/玉米醇溶蛋白复合纳米粒子 | — | — | — | — | 纳米淀粉与玉米醇溶蛋通过静电作用和氢键络合形成淀粉/玉米醇溶蛋白复合纳米粒子,以此粒子为稳定剂制备出pH响应型 Pickering乳液 | 制备pH响应型Pickering乳液 | [ |
谷胶蛋白/乙基 纤维素复合粒子 | 匀浆法 | 水 | 玉米油 | W/O | 改变谷胶蛋白与乙基纤维素的比例,可调控粒子的粒径、接触角和动态界面张力等性能。在水的质量分数为55%时,乳液发生相转化,由W/O型转化为O/W型。以此复合粒子制备的乳液稳定性至少为433天 | — | [ |
壳聚糖/瓜尔豆胶纳米粒子 | 匀浆法 | — | 亚麻 籽油 | — | 通过pH调控壳聚糖/瓜尔豆胶纳米粒子的聚集度和表面电荷,从而制备出高品质的Pickering乳液。所得乳液在4℃下储存6个月后,最低的乳析指数为(1.81±0.21)% | 用于制备包埋虾青素的功能食品 | [ |
交联聚(4-乙烯吡啶)粒子 | — | — | — | — | 基于静电排斥作用的交联聚(4-乙烯吡啶)粒子拥有可变结构,使其具备了开关功能,通过控制pH和离子强度的大小,可方便地使乳液在稳定和失稳中转换 | — | [ |
疏水琼脂微凝胶 | — | — | — | — | 改性后的琼脂凝胶粒子的三相接触角可由大约60°变为96°。乳液中的微凝胶形成了凝胶网格或者其包裹于油滴的表面,为油滴提供了紧密的障碍,可防止油滴的聚并和奥斯瓦尔德熟化 | — | [ |
二醛纤维素纳米晶/明胶 | — | — | — | — | 二醛纤维素纳米晶表面的醛基与明胶表面的氨基发生Schiff碱反应,导致乳液界面强度和连续相中网络结构的增强,乳液流变性和稳定性获得明显改善 | — | [ |
酯化木质素粒子 | — | — | — | O/W | 与未改性的木质素粒子相比,经酯化改性的木质素粒子制备的Pickering乳液的乳液滴平均尺寸更小,zeta电位更高,流动性更好,因而稳定性更好 | — | [ |
固体乳化剂 | Pickering乳液 | 用途 | 参考文献 | ||||
---|---|---|---|---|---|---|---|
制乳方式 | 水相 | 油相 | 类型 | 特征 | |||
磁响应改性TiO2海藻酸钙微球 | 匀浆法 | 去离子水 | 正己烷 | W/O | 制备的W/O型Pickering乳液可稳定存在150d以上,在外界磁场作用下,乳液可定向移动并实现破乳分离 | 制备磁响应Pickering乳液 | [ |
两性木质素@ SiO2 | 匀浆法 | 水 | 正癸烷 | O/W | pH=3~4时,两性木质素被吸附在SiO2表面,实现了SiO2的原位疏水改性,形成稳定的Pickering乳液。当pH>4时,由于强烈的静电排斥作用,仅有少量的两性木质素被吸附在SiO2表面,形成不稳定的乳液 | 制备pH响应Pickering乳液 | [ |
大豆壳多聚糖@ SiO2 | 匀浆法 | 水 | 大豆油 | O/W | SiO2与大豆壳多聚糖通过氢键络合形成复合粒子,随着SHP浓度的增大,界面张力降低,界面粒子的吸附率增大。在大豆壳多聚糖浓度较高时,连续相中的胶态凝胶为乳液提供屈服应力,在低剪切作用下可产生类凝胶态的静态行为。此静态乳液凝胶具有优良的稳定性 | — | [ |
氧化石墨烯/再生甲壳素 | 匀浆法 | 水 | 石蜡和异佛尔酮二异氰酸酯 | — | — | 制备相变微胶囊 | [ |
固体乳化剂 | Pickering乳液 | 用途 | 参考文献 | ||||
---|---|---|---|---|---|---|---|
制乳方式 | 水相 | 油相 | 类型 | 特征 | |||
磁响应改性TiO2海藻酸钙微球 | 匀浆法 | 去离子水 | 正己烷 | W/O | 制备的W/O型Pickering乳液可稳定存在150d以上,在外界磁场作用下,乳液可定向移动并实现破乳分离 | 制备磁响应Pickering乳液 | [ |
两性木质素@ SiO2 | 匀浆法 | 水 | 正癸烷 | O/W | pH=3~4时,两性木质素被吸附在SiO2表面,实现了SiO2的原位疏水改性,形成稳定的Pickering乳液。当pH>4时,由于强烈的静电排斥作用,仅有少量的两性木质素被吸附在SiO2表面,形成不稳定的乳液 | 制备pH响应Pickering乳液 | [ |
大豆壳多聚糖@ SiO2 | 匀浆法 | 水 | 大豆油 | O/W | SiO2与大豆壳多聚糖通过氢键络合形成复合粒子,随着SHP浓度的增大,界面张力降低,界面粒子的吸附率增大。在大豆壳多聚糖浓度较高时,连续相中的胶态凝胶为乳液提供屈服应力,在低剪切作用下可产生类凝胶态的静态行为。此静态乳液凝胶具有优良的稳定性 | — | [ |
氧化石墨烯/再生甲壳素 | 匀浆法 | 水 | 石蜡和异佛尔酮二异氰酸酯 | — | — | 制备相变微胶囊 | [ |
固体乳化剂 | Pickering乳液 | 用途 | 参考文献 | ||||
---|---|---|---|---|---|---|---|
制乳方式 | 水相 | 油相 | 类型 | 特征 | |||
聚乙二醇-紫胶/聚乳酸Janus纳米粒子 | 旋涡混合器乳化 | 水 | 蚕丝油 | O/W | 聚乙二醇链段接枝到紫胶球表面,获得雪人形、两亲性的聚乙二醇-紫胶/聚乳酸Janus粒子,此两亲性的Janus粒子稳定的Pickering乳液可稳定存在一年 | 制备pH响应性和乳液类型可灵活控制的Pickering乳液 | [ |
SiO2 Janus粒子 | 匀浆法 | 去离子水 | 庚烷 | — | 以三种Janus粒子为乳化剂可制备出三种稳定性良好的Pickering乳液和微囊 | 制备Pickering乳液和微囊,用于固定脂肪酶 | [ |
自交联吸附胶团修饰纳米Fe3O4 Janus粒子 | — | — | — | — | 依赖于其在油/水界面的高分离能,SCA-Fe3O4Janus纳米粒子对温度、盐度和pH等环境压力具有超高的稳定性 | 制备超稳定Pickering乳液 | [ |
固体乳化剂 | Pickering乳液 | 用途 | 参考文献 | ||||
---|---|---|---|---|---|---|---|
制乳方式 | 水相 | 油相 | 类型 | 特征 | |||
聚乙二醇-紫胶/聚乳酸Janus纳米粒子 | 旋涡混合器乳化 | 水 | 蚕丝油 | O/W | 聚乙二醇链段接枝到紫胶球表面,获得雪人形、两亲性的聚乙二醇-紫胶/聚乳酸Janus粒子,此两亲性的Janus粒子稳定的Pickering乳液可稳定存在一年 | 制备pH响应性和乳液类型可灵活控制的Pickering乳液 | [ |
SiO2 Janus粒子 | 匀浆法 | 去离子水 | 庚烷 | — | 以三种Janus粒子为乳化剂可制备出三种稳定性良好的Pickering乳液和微囊 | 制备Pickering乳液和微囊,用于固定脂肪酶 | [ |
自交联吸附胶团修饰纳米Fe3O4 Janus粒子 | — | — | — | — | 依赖于其在油/水界面的高分离能,SCA-Fe3O4Janus纳米粒子对温度、盐度和pH等环境压力具有超高的稳定性 | 制备超稳定Pickering乳液 | [ |
59 | Yilin JIE, CHEN Fusheng, ZHU Tingwei, et al. High internal phase emulsions stabilized solely by carboxymethyl chitosan[J]. Food Hydrocolloids, 2022, 127: 107554. |
60 | HE Xufa, JIA Kangle, YU Longfei, et al. Robust pH-switchable Pickering emulsions stabilized solely by organic Rosin-based particles with adjustable wettability[J]. Journal of Molecular Liquids, 2022, 353: 118751. |
61 | TANG Mingyi, WANG Xingrui, WU Fei, et al. Au nanoparticle/graphene oxide hybrids as stabilizers for Pickering emulsions and Au nanoparticle/graphene oxide@polystyrene microspheres[J]. Carbon, 2014, 71: 238-248. |
62 | ZHOU Yan, SUN Shanshan, BEI Weiya, et al. Preparation and antimicrobial activity of oregano essential oil Pickering emulsion stabilized by cellulose nanocrystals[J]. International Journal of Biological Macromolecules, 2018, 112: 7-13. |
63 | HE Xiao, LIU Qingxia, XU Zhenghe. Cellulose-coated magnetic Janus nanoparticles for dewatering of crude oil emulsions[J]. Chemical Engineering Science, 2021, 230: 116215. |
64 | LIN Kun-Yi Andrew, YANG Hongta, PETIT Camille, et al. Magnetically controllable Pickering emulsion prepared by a reduced graphene oxide-iron oxide composite[J]. Journal of Colloid and Interface Science, 2015, 438: 296-305. |
65 | 薛芬, 彭莲花, 郝雅娟, 等. 磁响应界面活性复合材料制备及乳化性能研究[J]. 山西大学学报(自然科学版), 2014, 37(2): 257-263. |
XUE Fen, PENG Lianhua, HAO Yajuan, et al. Preparation and emulsifying properties of magnetically responsive and | |
interfacially active composites[J]. Journal of Shanxi University (Natural Science Edition), 2014, 37(2): 257-263. | |
66 | ZHANG Qianqian, ZHANG Xueke, YAN Nana, et al. Pickering emulsion stabilized by temperature-sensitive PS@PNIPA nanoparticles as microcontainers[J]. Polymer, 2023, 268: 125710. |
67 | WANG Chao, PEI Xiaopeng, TAN Junling, et al. Thermoresponsive starch-based particle-stabilized Pickering high internal phase emulsions as nutraceutical containers for controlled release[J]. International Journal of Biological Macromolecules, 2020, 146: 171-178. |
68 | FENG Xin, SUN Yi, TAN Hongxia, et al. Effect of oil phases on the stability of myofibrillar protein microgel particles stabilized Pickering emulsions: The leading role of viscosity[J]. Food Chemistry, 2023, 413: 135653. |
1 | 程芳琴, 焦玉花, 李恩泽, 等. 智能响应型Pickering乳液的制备及在物质分离中的应用进展[J]. 化工进展, 2021, 40(4): 2206-2214. |
CHENG Fangqin, JIAO Yuhua, LI Enze, et al. Progress on the preparation of intelligent responsive Pickering emulsions and their applications in matter separation[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2206-2214. | |
2 | 张兆宇, 姜秋艳, 孙宁, 等. 刺激响应型Pickering乳液的制备及应用进展[J]. 精细化工, 2021, 38(2): 259-268. |
ZHANG Zhaoyu, JIANG Qiuyan, SUN Ning, et al. Progress on preparation and application of stimuli-responsive Pickering emulsion[J]. Fine Chemicals, 2021, 38(2): 259-268. | |
3 | GONZALEZ ORTIZ Danae, Celine POCHAT-BOHATIER, CAMBEDOUZOU Julien, et al. Current trends in Pickering emulsions: Particle morphology and applications[J]. Engineering, 2020, 6(4): 468-482. |
4 | 刘德新, 朱彤宇, 邵明鲁, 等. Pickering乳液在石油行业中的应用进展[J]. 石油化工, 2017, 46(11): 1434-1441. |
LIU Dexin, ZHU Tongyu, SHAO Minglu, et al. Applications of Pickering emulsion in petroleum industry[J]. Petrochemical Technology, 2017, 46(11): 1434-1441. | |
5 | 陈凤凤, 陶胜男, 龚穗菁, 等. 化妆品乳液及乳化新技术(Ⅰ)——皮克林乳液的基本原理及其在化妆品中的应用[J]. 日用化学工业, 2021, 51(2): 89-97, 114. |
CHEN Fengfeng, TAO Shengnan, GONG Suijing, et al. Cosmetic emulsions and new technologies of emulsification (Ⅰ) Fundamental principles of Pickering emulsions and their applications in cosmetics[J]. China Surfactant Detergent & Cosmetics, 2021, 51(2): 89-97, 114. | |
6 | 田怀香, 卢卓彦, 胡静. 食品级皮克林乳液制备及应用研究进展[J]. 中国食品学报, 2018, 18(1): 225-232. |
TIAN Huaixiang, LU Zhuoyan, HU Jing. Preparation and application of food-grade Pickering emulsion[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(1): 225-232. | |
7 | ALBERT Claire, BELADJINE Mohamed, TSAPIS Nicolas, et al. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications[J]. Journal of Controlled Release, 2019, 309: 302-332. |
8 | LIN Zhaoyun, ZHANG Zhe, LI Youming, et al. Recyclable magnetic-Pickering emulsion liquid membrane for extracting phenol compounds from wastewater[J].Journal of Materials Science, 2016, 51(13): 6370-6378. |
9 | 田旭旺,葛小会,石兴博,等. 纳米纤维素在Pickering乳液制备中的应用研究进展[J]. 日用化学工业, 2020, 50(3): 194-198, 203. |
TIAN Xuwang, GE Xiaohui, SHI Xingbo, et al. Advances in the application of nanocellulose in Pickering emulsion preparation[J]. China Surfactant Detergent & Cosmetics, 2020, 50(3): 194-198, 203. | |
10 | CASTEL Virginia, RUBIOLO Amelia C, CARRARA Carlos R. Droplet size distribution, rheological behavior and stability of corn oil emulsions stabilized by a novel hydrocolloid (Brea gum) compared with gum Arabic[J]. Food Hydrocolloids, 2017, 63: 170-177. |
11 | SARKER Mridul, TOMCZAK Nikodem, Sierin LIM. Protein nanocage as a pH-switchable Pickering emulsifier[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 11193-11201. |
12 | KALTSA O, GATSI I, YANNIOTIS S, et al. Influence of ultrasonication parameters on physical characteristics of olive oil model emulsions containing xanthan[J]. Food and Bioprocess Technology, 2014, 7(7): 2038-2049. |
13 | THOMPSON K L, ARMES S P, YORK D W. Preparation of Pickering emulsions and colloidosomes with relatively narrow size distributions by stirred cell membrane emulsification[J]. Langmuir, 2011, 27(6): 2357-2363. |
14 | KÖHLER K, SANTANA Aline S, BRAISCH Brigitte, et al. High pressure emulsification with nano-particles as stabilizing agents[J]. Chemical Engineering Science, 2010, 65(10): 2957-2964. |
15 | 徐文华, 张佳, 王梓涵, 等. 双重乳液的制备及应用研究进展[J]. 食品与机械, 2020, 36(9): 1-11. |
XU Wenhua, ZHANG Jia, WANG Zihan, et al. Progress in preparation and application of double emulsion[J]. Food & | |
Machinery, 2020, 36(9): 1-11. | |
16 | VLADISAVLJEVIĆ G T, KOBAYASHI Isao, NAKAJIMA Mitsutoshi. Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices[J]. Microfluidics and Nanofluidics, 2012, 13(1): 151-178. |
17 | PRIEST Craig, REID Mathew D, WHITBY Catherine P. Formation and stability of nanoparticle-stabilised oil-in-water emulsions in a microfluidic chip[J]. Journal of Colloid and Interface Science, 2011, 363(1): 301-306. |
18 | YUAN Qingchun, CAYRE Olivier J, MANGA Mohamed, et al. Preparation of particle-stabilized emulsions using membrane emulsification[J]. Soft Matter, 2010, 6(7): 1580-1588. |
19 | MANGA Mohamed S, CAYRE Olivier J, WILLIAMS Richard A, et al. Production of solid-stabilised emulsions through rotational membrane emulsification: Influence of particle adsorption kinetics[J]. Soft Matter, 2012, 8(5): 1532-1538. |
20 | YUAN Qingchun, ARYANTI Nita, Gemma GUTIÉRREZ, et al. Enhancing the throughput of membrane emulsification techniques to manufacture functional particles[J]. Industrial & Engineering Chemistry Research, 2009, 48(19): 8872-8880. |
21 | SUN Guanqing, QI Feng, WU Jie, et al. Preparation of uniform particle-stabilized emulsions using SPG membrane emulsification[J]. Langmuir, 2014, 30(24): 7052-7056. |
22 | JOSCELYNE Simon M, Gun TRÄGÅRDH. Membrane emulsification—A literature review[J]. Journal of Membrane Science, 2000, 169(1): 107-117. |
23 | 王森, 陈英. 纳米TiO2稳定乳液的制备及其在微胶囊制备中的应用[J]. 纺织学报, 2020, 41(5): 105-111. |
WANG Sen, CHEN Ying. Preparation of nano-TiO2 stabilized emulsion and its application in microencapsulation[J]. Journal of Textile Research, 2020, 41(5): 105-111. | |
24 | 林兆云, 于得海, 李友明. 纳米Fe3O4稳定的Pickering型ASA乳液[J]. 化工学报, 2014, 65(2): 641-646. |
LIN Zhaoyun, YU Dehai, LI Youming. Pickering-type ASA emulsions stabilized by Fe3O4 nanoparticles[J]. CIESC Journal, 2014, 65(2): 641-646. | |
25 | 刘杏念, 王凌, 李斌, 等. 重质碳酸钙稳定的O/W型Pickering乳液及其粒度效应研究[J]. 食品与机械, 2019, 35(4): 20-25, 112. |
LIU Xingnian, WANG Ling, LI Bin, et al. O/W Pickering emulsions stabilized by CaCO3 and particle size effect[J]. Food & Machinery, 2019, 35(4): 20-25, 112. | |
26 | WANG Shuangjia, SHEN Yun, CHEN Xiuping, et al. Cationic surfactant-modified palygorskite particles as effective stabilizer for Pickering emulsion gel formation[J]. Applied Clay Science, 2022, 219: 106439. |
27 | ZHANG Yuanxia, BAO Yan, ZHANG Wenbo, et al. Factors that affect Pickering emulsions stabilized by mesoporous hollow silica microspheres[J]. Journal of Colloid and Interface Science, 2023, 633: 1012-1021. |
28 | ZHAO Qihang, YANG Wenbin, ZHANG Hongping, et al. Graphene oxide Pickering phase change material emulsions with high thermal conductivity and photo-thermal performance for thermal energy management[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575: 42-49. |
29 | 刘建平, 李加兴, 吴志康, 等. 月桂酸改性氧化锌纳米颗粒的Pickering乳化性能研究[J]. 日用化学工业, 2020, 50(8): 542-546. |
LIU Jianping, LI Jiaxing, WU Zhikang, et al. Study on the Pickering emulsifying properties of zinc oxide nanoparticles | |
modified by lauric acid[J]. China Surfactant Detergent & Cosmetics, 2020, 50(8): 542-546. | |
30 | 白云刚. 改性硅藻土稳定的Pickering乳液及其聚合研究[D]. 合肥: 中国科学技术大学,2021. |
BAI Yungang. Study Pickering emulsion and polymerization stabilized by modified diatomite particles[D]. Hefei: University of Science and Technology of China, 2021. | |
31 | WANG Jing, DENG Hanyue, SUN Yajuan, et al. Montmorillonite and alginate co-stabilized biocompatible Pickering emulsions with multiple-stimulus tunable rheology[J]. Journal of Colloid and Interface Science, 2020, 562: 529-539. |
32 | DIBAJI Atieh Sadat, RASHIDI Alimorad, BANIYAGHOOB Sahar, et al. Synthesizing CNT/MgO nanocomposite to form stable Pickering emulsion at high temperature and salinity and its application to improved oil displacement efficiency[J]. Chemical Engineering Research and Design, 2022, 186: 599-609. |
33 | 谭天仪, 李璟, 夏锐, 等. 超细化豆渣作为皮克林乳液稳定剂的特性研究[J]. 食品与发酵工业,2020, 46(2): 47-54. |
TAN Tianyi, LI Jing, XIA Rui, et al. Preparation of ultrafine okara and its characteristics as a stabilizer for Pickering emulsion[J]. Food and Fermentation Industries, 2020, 46(2): 47-54. | |
34 | LI Songnan, HUANG Liang, ZHANG Bin, et al. Fabrication and characterization of starch/zein nanocomposites with pH-responsive emulsion behavior[J]. Food Hydrocolloids, 2021, 112: 106341. |
35 | ZHOU Fuzhen, YU Xinhao, LUO Donghui, et al. Pickering water in oil emulsions prepared from biocompatible gliadin/ethyl cellulose complex particles[J]. Food Hydrocolloids, 2023, 134: 108050. |
36 | YANG Lu, CAO Xinyu, GAI Anran, et al. Chitosan/guar gum nanoparticles to stabilize Pickering emulsion for astaxanthin encapsulation[J]. LWT-Food Science and Technology, 2022, 165: 113727. |
37 | Grégory DOUYÈRE, LECLERCQ Loïc, Véronique NARDELLO-RATAJ. Cross-linked poly(4-vinylpyridine) particles for pH- and ionic strength-responsive “on-off” Pickering emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631: 127705. |
38 | XIAO Qiong, CHEN Zizhou, XIE Xiangji, et al. A novel Pickering emulsion stabilized solely by hydrophobic agar microgels[J]. Carbohydrate Polymers, 2022, 297: 120035. |
39 | 曹子璇, 吕天艺, 冯鑫, 等. 二醛纳米纤维素的制备及其与明胶协同稳定Pickering 乳液研究[J]. 食品与发酵工业, 2022, 48(20): 7-14. |
CAO Zixuan, Tianyi LYU, FENG Xin, et al. Preparation of dialdehyde nanocellulose and Pickering emulsions which synergistically stabilized with gelatin[J]. Food and Fermentation Industries, 2022, 48(20): 7-14. | |
40 | SHOREY Rohan, MEKONNEN Tizazu H. Esterification of lignin with long chain fatty acids for the stabilization of oil-in-water Pickering emulsions[J]. International Journal of Biological Macromolecules, 2023, 230: 123143. |
41 | 杨鑫, 孙鹤家, 王伟浩, 等. 磁响应的海藻酸钙微球稳定油包水型Pickering乳液研究[J]. 日用化学工业, 2019, 49(8): 503-507, 514. |
YANG Xin, SUN Hejia, WANG Weihao, et al. Study on water-in-oil Pickering emulsion stabilized by magnetic responsive calcium alginate microspheres[J]. China Surfactant Detergent & Cosmetics, 2019, 49(8): 503-507, 514. | |
42 | LU Shuo, YANG Dongjie, WANG Miao, et al. Pickering emulsions synergistic-stabilized by amphoteric lignin and SiO2 nanoparticles: Stability and pH-responsive mechanism[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124158. |
43 | ZHAO Guilan, WANG Shengnan, LI Yangyang, et al. Properties and microstructure of Pickering emulsion synergistically stabilized by silica particles and soy hull polysaccharides[J]. Food Hydrocolloids, 2023, 134: 108084. |
44 | 辛天佑. 氧化石墨烯与再生甲壳素稳定的皮克林乳液用于制备相变微胶囊[D]. 上海: 东华大学,2020. |
MAITHYA Onesmus M. Application of graphene oxide and regenerated chitin Pickering emulsions in microencapsulating phase change material[D]. Shanghai: Donghua University, 2020. | |
45 | 周婉蓉, 孙巍, 杨平辉. Janus粒子的制备及功能化应用[J]. 化学进展,2018, 30( 11): 1601-1614. |
ZHOU Wanrong, SUN Wei, YANG Pinghui. Preparation and functional application of Janus particles[J]. Progress in Chemistry, 2018, 30( 11): 1601-1614. | |
46 | 高党鸽, 常瑞, 吕斌, 等. Janus 纳米材料可控制备的研究进展[J]. 高分子材料科学与工程, 2019, 35(1): 168-175. |
GAO Dangge, CHANG Rui, Bin LYU, et al. Progress on controllable preparation of Janus nanomaterials[J]. Polymer Materials Science & Engineering, 2019, 35(1): 168-175. | |
47 | 张元霞, 鲍艳, 马建中. 两亲性Janus粒子的合成及其在Pickering 乳液中的应用[J]. 化学进展, 2021, 33(2): 254-262. |
ZHANG Yuanxia, BAO Yan, MA Jianzhong. Synthesis of Janus particles and their application progress in Pickering | |
emulsion[J]. Progress in Chemistry, 2021, 33(2): 254-262. | |
48 | 孙竹. 纳米颗粒稳定的Pickering乳液和气泡的制备与研究[D]. 杭州: 浙江大学,2021. |
SUN Zhu. Preparation and study on nanoparticle-stabilized Pickering emulsion and bubble[D]. Hangzhou: Zhejiang University, 2021. | |
49 | 曹伟. Janus纳米粒子稳定的Pickering乳液及酶固定化应用[D]. 天津: 天津大学,2015. |
CAO Wei. The preparation of Janus nanoparticles stabilized Pickering emulsions for enzyme immobilization[D]. Tianjin: Tianjin University, 2015. | |
50 | WANG Hong, NYEIN EI SAN Khin, FANG Yun, et al. Self crosslinked admicelle-Fe3O4 Janus nanoparticle with high detachment energy to creat low-energy emulsified and ultra-stable Pickering emulsion[J]. Journal of Molecular Liquids, 2022, 368: 120778. |
51 | 易成林, 杨逸群, 江金强, 等. 颗粒乳化剂的研究及应用[J]. 化学进展, 2011, 23(1): 65-79. |
YI Chenglin, YANG Yiqun, JIANG Jinqiang, et al. Research and application of particle emulsifiers[J]. Progress in Chemistry, 2011, 23(1): 65-79. | |
69 | 诸超, 朱叶, 魏玮, 等. 香豆素改性透明质酸颗粒乳化剂的制备及应用[J]. 功能高分子学报, 2016, 29(4): 388-396. |
ZHU Chao, ZHU Ye, WEI Wei, et al. Preparation and application of particulate emulsifier of coumarin modified hyaluronic acid[J]. Journal of Functional Polymers, 2016, 29(4): 388-396. | |
70 | ZHANG Yin, WANG Haitao, HOU Yitong, et al. Pickering emulsion stabilized by gliadin nanoparticles for astaxanthin delivery[J]. Journal of Food Engineering, 2023, 345: 111417. |
52 | 姜曼. 蛋白质基Pickering乳液的研究进展[J]. 食品与发酵工业, 2021, 47(3): 259-264. |
JIANG Man. Advance in protein based Pickering emulsion[J]. Food and Fermentation Industries, 2021, 47(3): 259-264. | |
53 | LI Xia, LI Jun, GONG Jie, et al. Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water Pickering emulsions[J]. Carbohydrate Polymers, 2018, 183: 303-310. |
54 | MADIVALA Basavaraj, VANDEBRIL Steven, FRANSAER Jan, et al. Exploiting particle shape in solid stabilized emulsions[J]. Soft Matter, 2009, 5(8): 1717-1727. |
55 | 喻华平, 岳鹏飞, 黄桂婷, 等. Pickering乳剂作为药物载体的研究进展[J]. 中国医药工业杂志, 2021, 52(6): 771-780. |
YU Huaping, YUE Pengfei, HUANG Guiting, et al. Research progress of Pickering emulsion as a drug carrier[J]. Chinese | |
Journal of Pharmaceuticals, 2021, 52( 6): 771-780. | |
56 | DE FOLTER Julius W J, HUTTER Eline M, CASTILLO Sonja I R, et al. Particle shape anisotropy in Pickering emulsions: Cubes and peanuts[J]. Langmuir, 2014, 30(4): 955-964. |
57 | RADNIA Hamideh, SOLAIMANY NAZAR Ali Reza, RASHIDI Alimorad. Effect of asphaltene on the emulsions stabilized by graphene oxide: A potential application of graphene oxide in enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2019, 175: 868-880. |
58 | LU Hao, TIAN Yaoqi. Nanostarch: Preparation,modification, and application in Pickering emulsions[J]. Journal of Agricultural and Food Chemistry, 2021, 69(25): 6929-6942. |
[1] | LIU Han, QU Minglu, YE Zhendong, YANG Fan, HUANG Beijia, ZHANG Yaning, LIU Hongzhi. Evaluation of the thermal energy storage performance of calcium-magnesium binary composite salt hydrates [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1764-1773. |
[2] | WANG Hongyan, MA Ziran, LI Ge, MA Jing, ZHAO Chunlin, ZHOU Jiali, WANG Lei, PENG Shengpan. Research progress in synergistic catalytic elimination of multiple pollutants in flue gas of coal combustion coupled with renewable fuels [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1783-1795. |
[3] | LI Kai, WEI Helin, ZUO Xiahua, YANG Weimin, YAN Hua, AN Ying. Experimental study on the preparation and stability of water-based carbon black-collagen nanofluids [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1944-1952. |
[4] | LU Zhiqiang, SHI Yu, CHEN Pengyu, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of a vertical thermally regenerative ammonia-based battery with a high-concentration ammonia chamber [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1224-1231. |
[5] |
ZHANG Pengfei, YAN Zhangyan, REN Liang, ZHAGN Kui, LIANG Jialin, ZHAO Guangle, ZHANG Fanbin, HU Zhihai.
Research progress in the catalytic hydrodealkylation of C |
[6] | LI Kairui, GAO Zhaohua, LIU Tiantian, LI Jing, WEI Haisheng. Tuning the catalytic performance of Rh/FePO4 catalyst by reduction temperature for quinoline selective hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1342-1349. |
[7] | WU Jianyang, SHEN Lanyao, YU Yongli, WANG Runa, JIANG Ning, YANG Xinhe, QIU Jingyi, ZHOU Henghui. Preparation and performance optimization of high-nickel cathode materials in lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1387-1394. |
[8] | LIU Bin, WANG Yongjun, LYU Wangyang, CHEN Wenxing. Preparation and application of high stability titanium polyester catalyst TiOC@SiO2 [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1395-1402. |
[9] | ZHONG Caili, MO Qiulian, SUN Jianhua, DING Ningning, LIAO Dankui, SUN Lixia. Preparation of CeO2-In2O3 heterojunction composites for gas sensing monitoring of triethylamine [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1446-1455. |
[10] | YANG Jiaqi, JU Xiaojie, XIE Rui, WANG Wei, LIU Zhuang, PAN Dawei, CHU Liangyin. Controllable preparation and properties of photothermal-responsive controlled-release microspheres [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1474-1483. |
[11] | LIU Zepeng, ZENG Jijun, TANG Xiaobo, ZHAO Bo, HAN Sheng, LIAO Yuanhao, ZHANG Wei. Thermodynamic properties of four alkyl imidazolium phosphate ionic liquids [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1484-1491. |
[12] | LOU Rui, NIU Taoyuan, CAO Qihang, ZHANG Yiyi, LEI Wenqi, LU Congmin, WANG Zhiwei. Preparation and electrochemical performances of in-situ growth of δ-MnO2 on hierarchical porous carbon derived from LNP [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1013-1021. |
[13] | JU Fang. Fabrication and properties of synergistic antibacterial hydrogels based on the silver-sulfur coordination [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1039-1046. |
[14] | PENG Cheng, XU Yilin, SHI Yujing, ZHANG Wen, LI Yutao, WANG Haoran, ZHANG Wei, ZHAN Xiuping. Research progress on the biochar modification and its remediation of herbicide-contaminated water and soil [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1069-1081. |
[15] | SUN Hongjun, LI Teng, LI Jinxia, DING Hongbing. Disturbance wave height prediction model based on Kelvin-Helmholtz instability and interfacial shear [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 609-618. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |