Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (4): 1783-1795.DOI: 10.16085/j.issn.1000-6613.2023-0535
• Industrial catalysis • Previous Articles
WANG Hongyan(), MA Ziran(), LI Ge, MA Jing, ZHAO Chunlin, ZHOU Jiali, WANG Lei, PENG Shengpan
Received:
2023-04-06
Revised:
2023-06-16
Online:
2024-05-13
Published:
2024-04-15
Contact:
MA Ziran
王红妍(), 马子然(), 李歌, 马静, 赵春林, 周佳丽, 王磊, 彭胜攀
通讯作者:
马子然
作者简介:
王红妍(1986—),女,博士,高级工程师,研究方向为大气污染控制技术与工程、环境催化、CCUS技术。E-mail:hongyan.wang.ae@chnenergy.com.cn。
基金资助:
CLC Number:
WANG Hongyan, MA Ziran, LI Ge, MA Jing, ZHAO Chunlin, ZHOU Jiali, WANG Lei, PENG Shengpan. Research progress in synergistic catalytic elimination of multiple pollutants in flue gas of coal combustion coupled with renewable fuels[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1783-1795.
王红妍, 马子然, 李歌, 马静, 赵春林, 周佳丽, 王磊, 彭胜攀. 燃煤耦合可再生燃料烟气多污染物协同催化脱除研究进展[J]. 化工进展, 2024, 43(4): 1783-1795.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0535
项目 | 现行排放限值 | 严格后排放限值 |
---|---|---|
标准 | 火电厂大气污染排放标准/煤电节能减排升级与改造行动计划(GB 13223—2011) | 燃煤耦合污泥电厂大气污染物排放标准 (DB 31/1291—2021) |
烟尘(颗粒物)/mg·m-3 | 10 | 5 |
二氧化硫(SO2)/mg·m-3 | 35 | 35 |
氮氧化物(以NO2计)/mg·m-3 | 50 | 50 |
汞及其化合物(以Hg计)/mg·m-3 | 0.03 | 0.01 |
镉、铊及其化合物(以Cd+Ti计)/mg·m-3 | 0.1① | 0.01 |
锑、砷、铅、铬、钴、铜、锰、镍及其化合物 (以Sb+As+Pb+Cr+Co+Cu+Mn+Ni计)/mg·m-3 | 1.0① | 0.08 |
二𫫇英类/ngTEQ·m-3 | 0.1① | 0.02 |
非甲烷总烃(NHMC,以碳计)/mg·m-3 | 120② | 10③ |
项目 | 现行排放限值 | 严格后排放限值 |
---|---|---|
标准 | 火电厂大气污染排放标准/煤电节能减排升级与改造行动计划(GB 13223—2011) | 燃煤耦合污泥电厂大气污染物排放标准 (DB 31/1291—2021) |
烟尘(颗粒物)/mg·m-3 | 10 | 5 |
二氧化硫(SO2)/mg·m-3 | 35 | 35 |
氮氧化物(以NO2计)/mg·m-3 | 50 | 50 |
汞及其化合物(以Hg计)/mg·m-3 | 0.03 | 0.01 |
镉、铊及其化合物(以Cd+Ti计)/mg·m-3 | 0.1① | 0.01 |
锑、砷、铅、铬、钴、铜、锰、镍及其化合物 (以Sb+As+Pb+Cr+Co+Cu+Mn+Ni计)/mg·m-3 | 1.0① | 0.08 |
二𫫇英类/ngTEQ·m-3 | 0.1① | 0.02 |
非甲烷总烃(NHMC,以碳计)/mg·m-3 | 120② | 10③ |
组分 | NH3-SCR | Hg0氧化 | VOCs氧化 |
---|---|---|---|
O2 | 促进NO吸附,形成中间物种,促进 | 补充氧物种,促进 | 补充氧物种,促进 |
SO2 | 生成硫铵、硫酸盐,催化剂失活,抑制 | 生成硫酸盐酸性位,促进;竞争吸附, 消耗表面氧,抑制;无定论 | 竞争吸附,促进中间产物解吸,抑制 |
H2O | 竞争吸附,抑制 | 竞争吸附,抑制 | 竞争吸附,抑制 |
HCl | 消耗还原剂NH3,降低酸性,与活性位反应,抑制 | 活性Cl反应生成挥发性汞,促进 | — |
组分 | NH3-SCR | Hg0氧化 | VOCs氧化 |
---|---|---|---|
O2 | 促进NO吸附,形成中间物种,促进 | 补充氧物种,促进 | 补充氧物种,促进 |
SO2 | 生成硫铵、硫酸盐,催化剂失活,抑制 | 生成硫酸盐酸性位,促进;竞争吸附, 消耗表面氧,抑制;无定论 | 竞争吸附,促进中间产物解吸,抑制 |
H2O | 竞争吸附,抑制 | 竞争吸附,抑制 | 竞争吸附,抑制 |
HCl | 消耗还原剂NH3,降低酸性,与活性位反应,抑制 | 活性Cl反应生成挥发性汞,促进 | — |
催化剂类型 | 特点 | 中毒失活机制 | 影响因素及调控 | 应用情况 |
---|---|---|---|---|
贵金属催化剂Pt、Pd、Rh、Ru、Au等 | 活性高,价格昂贵 | ①硫中毒:生成非活性硫酸盐或金属硫化物;载体硫化或硫酸盐化 ②氯中毒:贵金属与氯较强的相互作用,活性位损失 ③水毒化:竞争吸附,钝化活性 ④易烧结:高温致使贵金属发生 Ostwald熟化和液化团聚 ⑤积炭:中间产物或者副产物沉积在表面 | ①通过贵金属修饰、载体改性以及限域法、晶面控制贵金属纳米颗粒的尺寸和分布、O2活化能力、载体性质(多孔与酸性位等)以及载体-金属相互作用等 ②烟气中S、P、Cl等元素以及水含量等 | 适用于无毒性元素或添加预处理(除尘、除水以及毒性元素)的工况,目前处于实验室研究阶段以及少量工业示范 |
非贵金属催化剂Mn、Ce、Cu、Co等金属 氧化物 | 来源广,价格低廉 | ①硫中毒:生成硫酸氢铵沉积催化剂、与活性组分形成硫酸盐 ②碱(土)金属中毒;沉积堵塞孔道,降低酸性;与催化剂表面活性氧结合,降低氧化还原能力 ③氯中毒:生成氯化铵沉积活性组分,活性组分损失 | ①通过催化剂的金属组成比例、制备方法、焙烧温度等控制构建氧空位,制备特定晶面暴露、特定孔道结构与形貌催化剂,提升低温还原能力、表面酸性等 ②烟气中毒性元素、其他气体的竞争吸附与毒化 | 非钒系催化剂还在实验室研究阶段及少量侧线示范 |
钒系催化剂 | 技术较成熟,应用规模较大 | 基于商业SCR催化剂改性的钒基催化剂已部分实现小规模应用 |
催化剂类型 | 特点 | 中毒失活机制 | 影响因素及调控 | 应用情况 |
---|---|---|---|---|
贵金属催化剂Pt、Pd、Rh、Ru、Au等 | 活性高,价格昂贵 | ①硫中毒:生成非活性硫酸盐或金属硫化物;载体硫化或硫酸盐化 ②氯中毒:贵金属与氯较强的相互作用,活性位损失 ③水毒化:竞争吸附,钝化活性 ④易烧结:高温致使贵金属发生 Ostwald熟化和液化团聚 ⑤积炭:中间产物或者副产物沉积在表面 | ①通过贵金属修饰、载体改性以及限域法、晶面控制贵金属纳米颗粒的尺寸和分布、O2活化能力、载体性质(多孔与酸性位等)以及载体-金属相互作用等 ②烟气中S、P、Cl等元素以及水含量等 | 适用于无毒性元素或添加预处理(除尘、除水以及毒性元素)的工况,目前处于实验室研究阶段以及少量工业示范 |
非贵金属催化剂Mn、Ce、Cu、Co等金属 氧化物 | 来源广,价格低廉 | ①硫中毒:生成硫酸氢铵沉积催化剂、与活性组分形成硫酸盐 ②碱(土)金属中毒;沉积堵塞孔道,降低酸性;与催化剂表面活性氧结合,降低氧化还原能力 ③氯中毒:生成氯化铵沉积活性组分,活性组分损失 | ①通过催化剂的金属组成比例、制备方法、焙烧温度等控制构建氧空位,制备特定晶面暴露、特定孔道结构与形貌催化剂,提升低温还原能力、表面酸性等 ②烟气中毒性元素、其他气体的竞争吸附与毒化 | 非钒系催化剂还在实验室研究阶段及少量侧线示范 |
钒系催化剂 | 技术较成熟,应用规模较大 | 基于商业SCR催化剂改性的钒基催化剂已部分实现小规模应用 |
1 | 郭慧娜, 吴玉新, 王学斌, 等. 燃煤机组耦合农林生物质发电技术现状及展望[J]. 洁净煤技术, 2022, 28(3): 12-22. |
GUO Huina, WU Yuxin, WANG Xuebin, et al. Current status of power generation technology of the agriculture and forest biomass co-firing in coal-fired power plants[J]. Clean Coal Technology, 2022, 28(3): 12-22. | |
2 | 王飞, 张盛, 王丽花. 燃煤耦合污泥焚烧发电技术研究进展[J]. 洁净煤技术, 2022, 28(3): 82-94. |
WANG Fei, ZHANG Sheng, WANG Lihua. Research progress of coal-fired coupled sludge incineration power generation technology[J]. Clean Coal Technology, 2022, 28(3): 82-94. | |
3 | 张晴, 莫华, 徐海红, 等. 燃煤电厂掺烧废弃物现状及环境管理建议[J]. 环境工程, 2020, 38(6): 202-207. |
ZHANG Qing, MO Hua, XU Haihong, et al. Present situation of co-combustion of waste and coal in power plants and suggestions on environmental management[J]. Environmental Engineering, 2020, 38(6): 202-207. | |
4 | 张贵泉, 苏 尧, 宋友亚, 等. 火电厂联合掺烧环境污染废弃物研究进展[C]. 天津: 中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会, 2021. |
ZHANG Guiquan, SU Yao, SONG Youya, et al. Research progess on co-combustion of environmental pollution[C]. Tianjin: CSES 2021 Annual Conference on Environmental Science and Technology, 2021. | |
5 | 方平, 唐子君, 黄建航, 等. 生物质锅炉烟气污染物排放特性及其控制对策[J]. 环境科学与技术, 2016, 39(10): 155-160. |
FANG Ping, TANG Zijun, HUANG Jianhang, et al. Emission characteristics of flue gas pollutants emitted from biomass boilers and its control strategies[J]. Environmental Science & Technology, 2016, 39(10): 155-160. | |
6 | 张宗振, 李德波, 李新虎, 等. 污泥掺烧对燃煤机组锅炉效率及环保系统的影响[J]. 浙江电力, 2020, 39(7): 93-101. |
ZHANG Zongzhen, LI Debo, LI Xinhu, et al. Impact of co-combustion of sludge with coal on boiler efficiency and environmental protection system of coal-fired generating units[J]. Zhejiang Electric Power, 2020, 39(7): 93-101. | |
7 | SI Meng, SHEN Boxiong, ADWEK George, et al. Review on the NO removal from flue gas by oxidation methods[J]. Journal of Environmental Sciences, 2021, 101: 49-71. |
8 | HE Chi, CHENG Jie, ZHANG Xin, et al. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-4568. |
9 | ZHAO Lingkui, LI Caiting, ZHANG Xunan, et al. A review on oxidation of elemental mercury from coal-fired flue gas with selective catalytic reduction catalysts[J]. Catalysis Science & Technology, 2015, 5(7): 3459-3472. |
10 | ZHAO Lingkui, LI Caiting, ZHANG Xunan, et al. Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNO x catalysts in simulated coal-fired flue gas[J]. Environmental Science and Pollution Research International, 2016, 23(2): 1471-1481. |
11 | CHEN Lin, LIAO Yanfen, XIN Shirong, et al. Simultaneous removal of NO and volatile organic compounds (VOCs) by Ce/Mo doping-modified selective catalytic reduction (SCR) catalysts in denitrification zone of coal-fired flue gas[J]. Fuel, 2020, 262: 116485. |
12 | SHI Zhiwei, PENG Qingguo, Jiaqiang E, et al. Mechanism, performance and modification methods for NH3-SCR catalysts: A review[J]. Fuel, 2023, 331(Part 2): 125885. |
13 | FAN Zhaoyang, SHI Jianwen, GAO Chen, et al. Gd-modified MnO x for the selective catalytic reduction of NO by NH3: The promoting effect of Gd on the catalytic performance and sulfur resistance[J]. Chemical Engineering Journal, 2018, 348: 820-830. |
14 | LIN Yuting, LI Yuran, XU Zhicheng, et al. Transformation of functional groups in the reduction of NO with NH3 over nitrogen-enriched activated carbons[J]. Fuel, 2018, 223: 312-323. |
15 | RAMIS Gianguido, BUSCA Guido, LORENZELLI Vincenzo, et al. Fourier transform infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on TiO2 anatase[J]. Applied Catalysis, 1990, 64: 243-257. |
16 | 张柏林. 低温脱硝机理及Mn-Zr-Ti催化剂研制[D]. 北京: 北京科技大学, 2020. |
ZHANG Bolin. Mechanism of selective catalytic reduction of NO x at low-temperature and preparation of Mn-Zr-Ti catalyst[D]. Beijing: University of Science and Technology Beijing, 2020. | |
17 | LIETTI Luca, NOVA Isabella, RAMIS Gianguido, et al. Characterization and reactivity of V2O5-MoO3/TiO2 de-NO x SCR catalysts[J]. Journal of Catalysis, 1999, 187(2): 419-435. |
18 | 刘清雅, 刘振宇, 李成岳. NH3在选择性催化还原NO过程中的吸附与活化[J]. 催化学报, 2006, 27(7): 636-646. |
LIU Qingya, LIU Zhenyu, LI Chengyue. Adsorption and activation of NH3 during selective catalytic reduction of NO by NH3 [J]. Chinese Journal of Catalysis, 2006, 27(7): 636-646. | |
19 | YANG Cuiting, MIAO Guang, PI Yunhong, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review[J]. Chemical Engineering Journal, 2019, 370: 1128-1153. |
20 | LI Hailong, HUANG Jinjin, YANG Jianping, et al. Reduction of oxidized mercury over NO x selective catalytic reduction catalysts: A review[J]. Chemical Engineering Journal, 2021, 421: 127745. |
21 | SENIOR Constance L. Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants[J]. Journal of the Air & Waste Management Association, 2006, 56(1): 23-31. |
22 | ISHAG Alhadi, YUE Yanxue, XIAO Jingting, et al. Recent advances on the adsorption and oxidation of mercury from coal-fired flue gas: A review[J]. Journal of Cleaner Production, 2022, 367: 133111. |
23 | ZHANG Bingkai, LIU Jing, SHEN Fenghua. Heterogeneous mercury oxidation by HCl over CeO2 catalyst: Density functional theory study[J]. The Journal of Physical Chemistry C, 2015, 119(27): 15047-15055. |
24 | REN Zheng, WU Zili, SONG Wenqiao, et al. Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability[J]. Applied Catalysis B: Environmental, 2016, 180: 150-160. |
25 | BEHAR Siham, Noel-Andrés GÓMEZ-MENDOZA, Miguel-Ángel GÓMEZ-GARCÍA, et al. Study and modelling of kinetics of the oxidation of VOC catalyzed by nanosized Cu-Mn spinels prepared via an alginate route[J]. Applied Catalysis A: General, 2015, 504: 203-210. |
26 | HOSSEINI M, BARAKAT T, COUSIN R, et al. Catalytic performance of core-shell and alloy Pd-Au nanoparticles for total oxidation of VOC: The effect of metal deposition[J]. Applied Catalysis B: Environmental, 2012, 111/112: 218-224. |
27 | YANG Yingju, LIU Jing, WANG Zhen. Reaction mechanisms and chemical kinetics of mercury transformation during coal combustion[J]. Progress in Energy and Combustion Science, 2020, 79: 100844. |
28 | ZHANG Xiaopeng, CUI Yuezong, WANG Jinxin, et al. Simultaneous removal of Hg0 and NO from flue gas by Co0.3-Ce0.35-Zr0.35O2 impregnated with MnO x [J]. Chemical Engineering Journal, 2017, 326: 1210-1222. |
29 | LIU Hui, CHEN Huijun, WANG Sheng, et al. Synergistic catalytic oxidation of Hg0 and NH3-SCR of NO over MnCeTiO x catalyst in flue gas[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107574. |
30 | ZHUANG Ye, LAUMB Jason, LIGGETT Richard, et al. Impacts of acid gases on mercury oxidation across SCR catalyst[J]. Fuel Processing Technology, 2007, 88(10): 929-934. |
31 | 王鹏鹰, 苏胜, 向军, 等. 低温SCR催化剂脱硝脱汞实验研究[J]. 燃烧科学与技术, 2014, 20(5): 423-427. |
WANG Pengying, SU Sheng, XIANG Jun, et al. Experimental study on NO reduction and Hg0 oxidation over low temperature SCR catalyst[J]. Journal of Combustion Science and Technology, 2014, 20(5): 423-427. | |
32 | 韩粉女. 凹凸棒土为载体的SCR催化剂的制备及其脱硝脱汞性能研究[D]. 南京: 南京理工大学, 2019. |
HAN Fennv. Preparation of SCR catalyst supported on attapulgite and its performance of denitrification and mercury removal[D]. Nanjing: Nanjing University of Science and Technology, 2019. | |
33 | YE Lyumeng, LU Peng, CHEN Xiongbo, et al. The deactivation mechanism of toluene on MnO x -CeO2 SCR catalyst[J]. Applied Catalysis B: Environmental, 2020, 277: 119257. |
34 | ZHAO Lingkui, HUANG Yan, ZHANG Junfeng, et al. Al2O3-modified CuO-CeO2 catalyst for simultaneous removal of NO and toluene at wide temperature range[J]. Chemical Engineering Journal, 2020, 397: 125419. |
35 | WANG Qiulin, HUNG Pao Chang, LU Shengyong, et al. Catalytic decomposition of gaseous PCDD/Fs over V2O5/TiO2-CNTs catalyst: Effect of NO and NH3 addition[J]. Chemosphere, 2016, 159: 132-137. |
36 | SU Guijin, HUANG Linyan, LIU Sha, et al. The combined disposal of 1, 2, 4-trichlorobenzene and nitrogen oxides using the synthesized Ce0.2TiAl α O x micro/nanomaterial[J]. Catalysis Science & Technology, 2015, 5(2): 1041-1051. |
37 | XIAO Gaofei, GUO Ziyang, LI Jianhan, et al. Insights into the effect of flue gas on synergistic elimination of toluene and NO over V2O5-MoO3(WO3)/TiO2 catalysts[J]. Chemical Engineering Journal, 2022, 435: 134914. |
38 | LU Peng, YE Lyumeng, YAN Xianhui, et al. Impact of toluene poisoning on MnCe/HZSM-5 SCR catalyst[J]. Chemical Engineering Journal, 2021, 414: 128838. |
39 | LU Peng, YE Lyumeng, YAN Xianhui, et al. Performance of toluene oxidation over MnCe/HZSM-5 catalyst with the addition of NO and NH3 [J]. Applied Surface Science, 2021, 567: 150836. |
40 | YE Lyumeng, LU Peng, PENG Yue, et al. Impact of NO x and NH3 addition on toluene oxidation over MnO x -CeO2 catalyst[J]. Journal of Hazardous Materials, 2021, 416: 125939. |
41 | PAN Hua, CHEN Zhenghui, MA Mudi, et al. Mutual inhibition mechanism of simultaneous catalytic removal of NO x and toluene on Mn-based catalysts[J]. Journal of Colloid and Interface Science, 2022, 607: 1189-1200. |
42 | GAN Lina, LI Kezhi, XIONG Shangchao, et al. MnO x -CeO2 catalysts for effective NO x reduction in the presence of chlorobenzene[J]. Catalysis Communications, 2018, 117: 1-4. |
43 | GAN Lina, SHI Wenbo, LI Kezhi, et al. Synergistic promotion effect between NO x and chlorobenzene removal on MnO x -CeO2 catalyst[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30426-30432. |
44 | YANG Bo, LI Zhong, HUANG Qiong, et al. Synergetic removal of elemental mercury and NO over TiCe0.25Sn0.25O x catalysts from flue gas: Performance and mechanism study[J]. Chemical Engineering Journal, 2019, 360: 990-1002. |
45 | 胡鹏. Mn-V-W/Ti催化剂脱硝协同脱汞性能实验研究[D]. 南京: 东南大学, 2019. |
HU Peng. Experimental Study on the denitrification and demercuration of the Mn-V-W/Ti catalysts[D]. Nanjing: Southeast University, 2019. | |
46 | LEE Kyung Ju, KUMAR Pullur Anil, MAQBOOL Muhammad Salman, et al. Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR: Physico-chemical properties and catalytic activity[J]. Applied Catalysis B: Environmental, 2013, 142-143: 705-717. |
47 | ZHANG Lei, LI Lulu, CAO Yuan, et al. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3 [J]. Applied Catalysis B: Environmental, 2015, 165: 589-598. |
48 | LI Zhong, SHEN Yuesong, LI Xihong, et al. Synergetic catalytic removal of Hg0 and NO over CeO2(ZrO2)/TiO2 [J]. Catalysis Communications, 2016, 82: 55-60. |
49 | WAN Qi, DUAN Lei, HE Kebin, et al. Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal-fired flue gas[J]. Chemical Engineering Journal, 2011, 170(2/3): 512-517. |
50 | WANG Fumei, SHEN Boxiong, GAO Lanjun, et al. Simultaneous removal of NO and Hg0 from oxy-fuel combustion flue gas over CeO2-modified low-V2O5-based catalysts[J]. Fuel Processing Technology, 2017, 168: 131-139. |
51 | CHI Guilong, SHEN Boxiong, YU Ranran, et al. Simultaneous removal of NO and Hg0 over Ce-Cu modified V2O5/TiO2 based commercial SCR catalysts[J]. Journal of Hazardous Materials, 2017, 330: 83-92. |
52 | 吴冬霞, 程行, 胡江亮, 等. VOCs燃烧催化剂耐硫性新进展[J]. 洁净煤技术, 2022, 28(2): 67-76. |
WU Dongxia, CHENG Hang, HU Jiangliang, et al. New progress on sulfur resistance of VOCs combustion catalysts[J]. Clean Coal Technology, 2022, 28(2): 67-76. | |
53 | SHAO Jiaming, WANG Zhihua, LIU Peixi, et al. Interplay effect on simultaneous catalytic oxidation of NO x and toluene over different crystal types of MnO2 catalysts[J]. Proceedings of the Combustion Institute, 2021, 38(4): 5433-5441. |
54 | WANG Teng, LI Caiting, ZHAO Lingkui, et al. The catalytic performance and characterization of ZrO2 support modification on CuO-CeO2/TiO2 catalyst for the simultaneous removal of Hg0 and NO[J]. Applied Surface Science, 2017, 400: 227-237. |
55 | DAI Qiguang, BAI Shuxing, LOU Yang, et al. Sandwich-like PdO/CeO2 nanosheet@HZSM-5 membrane hybrid composite for methane combustion: Self-redispersion, sintering-resistance and oxygen, water-tolerance[J]. Nanoscale, 2016, 8(18): 9621-9628. |
56 | JIANG Shaojian, LIU Xi, LI Hailong, et al. Synergistic effect of HCl and NO in elemental mercury catalytic oxidation over La2O3-TiO2 catalyst[J]. Fuel, 2018, 215: 232-238. |
57 | 胡鹏, 段钰锋, 陈亚南, 等. Mo-Mn/TiO2催化剂的协同脱硝脱汞特性[J]. 中国环境科学, 2018, 38(2): 523-531. |
HU Peng, DUAN Yufeng, CHEN Yanan, et al. Characteristics of denitrification and mercury removal by Mo-Mn/TiO2 catalysts[J]. China Environmental Science, 2018, 38(2): 523-531. | |
58 | CHEN J P, BUZANOWSKI M A, YANG R T, et al. Deactivation of the vanadia catalyst in the selective catalytic reduction process[J]. Journal of the Air & Waste Management Association, 1990, 40(10): 1403-1409. |
59 | JIANG Weiyu, YU Yulei, BI Feng, et al. Synergistic elimination of NO x and chloroaromatics on a commercial V2O5-WO3/TiO2 catalyst: Byproduct analyses and the SO2 effect[J]. Environmental Science & Technology, 2019, 53(21): 12657-12667. |
60 | GAN Lina, WANG Yu, CHEN Jianjun, et al. The synergistic mechanism of NO x and chlorobenzene degradation in municipal solid waste incinerators[J]. Catalysis Science & Technology, 2019, 9(16): 4286-4292. |
61 | YAN Naiqiang, CHEN Wanmiao, CHEN Jie, et al. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas[J]. Environmental Science & Technology, 2011, 45(13): 5725-5730. |
62 | LI Guobo, SHEN Kai, WANG Ling, et al. Synergistic degradation mechanism of chlorobenzene and NO x over the multi-active center catalyst: The role of NO2, Brønsted acidic site, oxygen vacancy[J]. Applied Catalysis B: Environmental, 2021, 286: 119865. |
63 | HRDLICKA Jason A, SEAMES Wayne S, MANN Michael D, et al. Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters[J]. Environmental Science & Technology, 2008, 42(17): 6677-6682. |
64 | BLYTHE Gary M, PARADIS Jennifer. Full-scale testing of a mercury oxidation catalyst upstream of a wet FGD system[R]. Electric Power Environmental Protection, U.S. Department of Energy, 2010. |
65 | XIANG Jun, WANG Pengying, SU Sheng, et al. Control of NO and Hg0 emissions by SCR catalysts from coal-fired boiler[J]. Fuel Processing Technology, 2015, 135: 168-173. |
66 | 蒋威宇. V2O5-WO3/TiO2催化剂协同净化NO x 与氯代芳香化合物的反应特征与副产物研究[D]. 杭州: 浙江大学, 2020. |
JIANG Weiyu. Reaction characteristics and byproducts analyses over V2O5-WO3/TiO2 catalyst in the synergistic elimination of NO x and chloroaromatics[D]. Hangzhou: Zhejiang University, 2020. | |
67 | HUANG Xu, WANG Dong, YANG Qilei, et al. Multi-pollutant control (MPC) of NO and chlorobenzene from industrial furnaces using a vanadia-based SCR catalyst[J]. Applied Catalysis B: Environmental, 2021, 285: 119835. |
68 | LI Can, SRIRAM Vishnu, LIU Zhouyang, et al. Sequentially prepared Mo-V-Based SCR catalyst for simultaneous Hg0 oxidation and NO reduction[J]. Applied Catalysis A: General, 2021, 614: 118032. |
69 | CHEN Lin, LIAO Yanfen, CHEN Yin, et al. Performance of Ce-modified V-W-Ti type catalyst on simultaneous control of NO and typical VOCS [J]. Fuel Processing Technology, 2020, 207: 106483. |
70 | ZHANG Xunan, LI Caiting, ZHAO Lingkui, et al. Simultaneous removal of elemental mercury and NO from flue gas by V2O5-CeO2/TiO2 catalysts[J]. Applied Surface Science, 2015, 347: 392-400. |
71 | ZHAO Lingkui, LI Caiting, WANG Yan, et al. Simultaneous removal of elemental mercury and NO from simulated flue gas using a CeO2 modified V2O5-WO3/TiO2 catalyst[J]. Catalysis Science & Technology, 2016, 6(15): 6076-6086. |
72 | CHEN Yin, LIAO Yanfen, CHEN Lin, et al. Performance of transition metal (Cu, Fe and Co) modified SCR catalysts for simultaneous removal of NO and volatile organic compounds (VOCs) from coal-fired power plant flue gas[J]. Fuel, 2021, 289: 119849. |
73 | ZHANG Shibo, ZHAO Yongchun, YANG Jianping, et al. Fe-modified MnO x /TiO2 as the SCR catalyst for simultaneous removal of NO and mercury from coal combustion flue gas[J]. Chemical Engineering Journal, 2018, 348: 618-629. |
74 | AO Ran, MA Liping, TANG Jianxiao, et al. 4Cu-ZSM-5 catalyst for the selective catalytic reduction of NO with NH3 and oxidation of elemental mercury[J]. Journal of Molecular Structure, 2021, 1230: 129924. |
75 | 黎哲. 堇青石负载CuCoFe类水滑石衍生催化剂的制备及同时去除VOCs和NO x 性能研究[D]. 北京: 北京林业大学, 2020. |
LI Zhe. Synthesis of cordierite supported layered double hydroxides-derived CuCoFe mixed metal oxide catalysts and their performance for simultaneous removal of VOCs and NO x [D]. Beijing: Beijing Forestry University, 2020. | |
76 | 芮泽宝, 纪红兵. 有机废气催化燃烧过程中多尺度效应和催化剂设计[J]. 化工学报, 2018, 69(1): 317-326. |
RUI Zebao, JI Hongbing. Multi-scale effect and catalyst design in catalytic combustion of organic waste gas[J]. CIESC Journal, 2018, 69(1): 317-326. | |
77 | FAN Xiaopeng, LI Caiting, ZENG Guangming, et al. The effects of Cu/HZSM-5 on combined removal of Hg0 and NO from flue gas[J]. Fuel Processing Technology, 2012, 104: 325-331. |
78 | YI Lei, XIE Jinke, LI Caiting, et al. LaO x modified MnO x loaded biomass activated carbon and its enhanced performance for simultaneous abatement of NO and Hg0 [J]. Environmental Science and Pollution Research, 2022, 29(2): 2258-2275. |
79 | KARTHIK Mani, LIN Liangyi, BAI Hsunling. Bifunctional mesoporous Cu-Al-MCM-41 materials for the simultaneous catalytic abatement of NO x and VOCs[J]. Microporous and Mesoporous Materials, 2009, 117(1/2): 153-160. |
80 | WANG Denghui, YAO Qi, LIU Sheng, et al. Effect of support on simultaneous removal of NO and Hg0 over Cu and Fe catalysts[J]. Journal of the Energy Institute, 2019, 92(6): 1852-1863. |
81 | CHEN Yuchi, LI Honghu, ZHANG Jingdong, et al. Enhanced performance and SO2 tolerance of Ce modified TiO2 supported MnSm catalyst for synergetic removal of Hg0 and NO from flue gas[J]. Fuel Processing Technology, 2022, 227: 107136. |
82 | 于宇雷. CeWO x 催化剂协同脱除氮氧化物及氯代芳香化合物的催化性能与反应机制研究[D]. 杭州: 浙江大学, 2021. |
YU Yulei. Catalytic performance and reaction mechanism study of synergistic elimination of NO x and chloroaromatics on CeWO x catalysts[D]. Hangzhou: Zhejiang University, 2021. | |
83 | 芮泽宝, 杨晓庆, 陈俊妃, 等. 光热协同催化净化挥发性有机物的研究进展及展望[J]. 化工学报, 2018, 69(12): 4947-4958. |
RUI Zebao, YANG Xiaoqing, CHEN Junfei, et al. Photo-thermal synergistic catalysis for VOCs purification: Current status and future perspectives[J]. CIESC Journal, 2018, 69(12): 4947-4958. | |
84 | 张一飞. 多组分金属纳米催化剂的合成设计及其在限域空间内的协同催化研究[D]. 北京: 华北电力大学, 2021. |
ZHANG Yifei. Research on multi-component metal nano-catalysts: Design, synthesis and synergistic catalysis in confined space[D]. Beijing: North China Electric Power University, 2021. | |
85 | XIE Hao, LIU Junyi. Synergistic removal of NO and Hg0 by nanoflower-like TiO2 supported MnCeO x [J]. Chemical Physics Letters, 2022, 789: 139322. |
86 | FAN Chi, LI Kezhi, PENG Yue, et al. Fe-Doped α-MnO2 nanorods for the catalytic removal of NO x and chlorobenzene: The relationship between lattice distortion and catalytic redox properties[J]. Physical Chemistry Chemical Physics, 2019, 21(46): 25880-25888. |
87 | 李剑晗, 肖高飞, 郦杲辉, 等. 改性钒基整体式催化剂的制备及其对燃煤烟气中甲苯与一氧化氮的同步去除性能[J]. 环境科学学报, 2021, 41(6): 2302-2310. |
LI Jianhan, XIAO Gaofei, LI Gaohui, et al. Preparation of modified vanadium-based monolithic catalyst and its simultaneous removal performance of toluene and nitric oxide in coal-fired flue gas[J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2302-2310. | |
88 | NACKEN Manfred, HEIDENREICH Steffen, HACKEL Marius, et al. Catalytic activation of ceramic filter elements for combined particle separation, NO x removal and VOC total oxidation[J]. Applied Catalysis B: Environmental, 2007, 70(1-4): 370-376. |
89 | 沙宇. 用于处理多组分污染物工业废气催化剂的研究[D]. 北京: 北京化工大学, 2017. |
SHA Yu. Study of removing the multicomponent industrial waste gas pollutants by combinged catalysts[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
90 | 张烁. 活性中心调控强化VOCs和NO x 催化脱除的机理研究[D]. 杭州: 浙江大学, 2020. |
ZHANG Shuo. Mechanistic study on the catalytic removal of VOCs and NO x enhanced by active centers regulation[D]. Hangzhou: Zhejiang University, 2020. | |
91 | NIKSA Stephen, FUJIWARA Naoki. A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas[J]. Journal of the Air & Waste Management Association, 2005, 55(12): 1866-1875. |
92 | WANG Hongyan, WANG Baodong, ZHOU Jiali, et al. CuO modified vanadium-based SCR catalysts for Hg0 oxidation and NO reduction[J]. Journal of Environmental Management, 2019, 239: 17-22. |
[1] | LIU Ruolu, TANG Haibo, HE Feifei, LUO Fengying, WANG Jinge, YANG Na, LI Hongwei, ZHANG Ruiming. Recent research and prospect of liquid organic hydrogen carries technology [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1731-1741. |
[2] | LIU Fangwang, HAN Yi, ZHANG Jiajia, BU Honghong, WANG Xingpeng, YU Chuanfeng, LIU Mengshuai. Research advance of heterogeneous catalytic system for the coupling between CO2 and epoxide into propylene carbonate [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1252-1265. |
[3] |
ZHANG Pengfei, YAN Zhangyan, REN Liang, ZHAGN Kui, LIANG Jialin, ZHAO Guangle, ZHANG Fanbin, HU Zhihai.
Research progress in the catalytic hydrodealkylation of C |
[4] | GU Xingpeng, MA Hongqin, LIU Jiahao. Modification of Rainey nickel with phosphorus quantum dots and its catalytic hydrodesulfurization performances [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1293-1301. |
[5] | ZHANG Shuming, LIU Huazhang. Optimization of Fe1-x O ammonia synthesis catalyst by BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1302-1308. |
[6] | LI Kairui, GAO Zhaohua, LIU Tiantian, LI Jing, WEI Haisheng. Tuning the catalytic performance of Rh/FePO4 catalyst by reduction temperature for quinoline selective hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1342-1349. |
[7] | LIU Bin, WANG Yongjun, LYU Wangyang, CHEN Wenxing. Preparation and application of high stability titanium polyester catalyst TiOC@SiO2 [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1395-1402. |
[8] | WANG Xiong, KANG Wenqian, REN Yue, QIAO Tongsen, ZHANG Peng, HUANG Anping, LI Guangquan. Pilot scale production of porous organic polymers and their application in polyolefin catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1412-1417. |
[9] | ZHONG Caili, MO Qiulian, SUN Jianhua, DING Ningning, LIAO Dankui, SUN Lixia. Preparation of CeO2-In2O3 heterojunction composites for gas sensing monitoring of triethylamine [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1446-1455. |
[10] | YAN Shoucheng, ZHANG Huihua, XU Qianqian, WANG Yukun. Application of graphene composite supported catalyst in the removal of NO from diesel exhaust [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1456-1465. |
[11] | DONG Bingyan, LI Zhendong, WANG Peixiang, TU Wenjuan, TAN Yanwen, ZHANG Qin. Performance and mechanism of the degradation of benzohydroxamic acid by DBD plasma-coupled BiOI catalytic materials [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1565-1575. |
[12] | PENG Cheng, XU Yilin, SHI Yujing, ZHANG Wen, LI Yutao, WANG Haoran, ZHANG Wei, ZHAN Xiuping. Research progress on the biochar modification and its remediation of herbicide-contaminated water and soil [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1069-1081. |
[13] | SHAN Liang, ZHOU Rongxing, HONG Bo, YANG Wenqi, KONG Ming. Improved residual network based on attention mechanism for flame temperature field reconstruction [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 688-695. |
[14] | CHEN Xiaozhen, LIU Li, YANG Chengmin, ZHENG Bumei, YIN Xiaoying, SUN Jin, YAO Yunhai, DUAN Weiyu. Research progress of alumina-supported hydrodesulfurization catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 948-961. |
[15] | DING Kang, HE Junqiao, CHEN Yuanjie, YANG Xiazhen, LIU Huazhang, HUO Chao. Effect of hydrochloric acid treatment on catalytic performance of Ru/Ba-MgO catalyst template cotton fiber [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 962-970. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |