Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 3632-3644.DOI: 10.16085/j.issn.1000-6613.2020-1610
• Chemical processes and equipment • Previous Articles Next Articles
Received:
2020-08-13
Revised:
2020-11-04
Online:
2021-07-19
Published:
2021-07-06
Contact:
PAN Zhenhai
通讯作者:
潘振海
作者简介:
王宇(1995—),男,硕士研究生,研究方向为微尺度流动与传热。E-mail:基金资助:
CLC Number:
WANG Yu, PAN Zhenhai. Analysis of evaporation characteristics of small water droplets sessile on horizontal and vertical substrates[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3632-3644.
王宇, 潘振海. 水平及竖直基底上微小固着液滴的蒸发特性分析[J]. 化工进展, 2021, 40(7): 3632-3644.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1610
物理性质 | 水 | 气体 |
---|---|---|
密度/kg·m-3 | -0.003903904T2+2.064089T+728.6815 | 理想气体方程[ |
热导率/W·m-1·K-1 | -0.000010512T2+0.007988T-0.840136 | 7.000×10-5T+5.180×10-3 |
比热容/J·kg-1 | 4182 | 1006.8 |
动力黏度/kg·m-1·s-1 | 2.20867×10-7T2-1.50835×10-4T+2.6226×10-2 | 4.897×10-8T+3.832×10-6 |
蒸气摩尔质量/kg·mol-1 | 0.018 | 0.029(空气) |
汽化潜热/J·kg-1 | -3.46T2+2.7554×106 |
物理性质 | 水 | 气体 |
---|---|---|
密度/kg·m-3 | -0.003903904T2+2.064089T+728.6815 | 理想气体方程[ |
热导率/W·m-1·K-1 | -0.000010512T2+0.007988T-0.840136 | 7.000×10-5T+5.180×10-3 |
比热容/J·kg-1 | 4182 | 1006.8 |
动力黏度/kg·m-1·s-1 | 2.20867×10-7T2-1.50835×10-4T+2.6226×10-2 | 4.897×10-8T+3.832×10-6 |
蒸气摩尔质量/kg·mol-1 | 0.018 | 0.029(空气) |
汽化潜热/J·kg-1 | -3.46T2+2.7554×106 |
基底温度/℃ | 实验数据[ | 模拟数据(误差) | 扩散模型数据(误差) |
---|---|---|---|
45.6 | 295 | 302.3s(2.4%) | 359s(21.7%) |
55.6 | 163 | 159.2s(2.5%) | 203s(24.5%) |
65.6 | 98 | 94.5s(3.6%) | 125s(27.6%) |
基底温度/℃ | 实验数据[ | 模拟数据(误差) | 扩散模型数据(误差) |
---|---|---|---|
45.6 | 295 | 302.3s(2.4%) | 359s(21.7%) |
55.6 | 163 | 159.2s(2.5%) | 203s(24.5%) |
65.6 | 98 | 94.5s(3.6%) | 125s(27.6%) |
1 | LIM T, HAN S, CHUNG J, et al. Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 431-441. |
2 | SINGH M, HAVERINEN H M, DHAGAT P, et al. Inkjet printing-process and its applications[J]. Advanced Materials, 2010, 22(6): 673-685. |
3 | YU J, WANG H. A molecular dynamics investigation on evaporation of thin liquid films[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 1218-1225. |
4 | DENG Y, CHEN L, LIU Q, et al. Nanoscale view of dewetting and coating on partially wetted solids[J]. Journal of Physical Chemistry Letters, 2016, 7(10): 1763-1768. |
5 | GOMEZ-RIOS G A, REYES-GARCES N, BOJKO B, et al. Biocompatible solid-phase microextraction nanoelectrospray ionization: an unexploited tool in bioanalysis[J]. Analytical Chemistry, 2016, 88(2): 1259-1265. |
6 | 赵述芳, 白琳, 付宇航, 等. 液滴流微反应器的基础研究及其应用[J]. 化工进展, 2015, 34(3): 593-607. |
ZHAO Shufang, BAI Lin, FU Yuhang, et al. Fundamental research and applications of droplet-based microreactor[J]. Chemical Industry and Engineering Progress, 2015, 34(3): 593-607. | |
7 | CHANG S T, VELEV O D. Evaporation-induced particle microseparations inside droplets floating on a chip[J]. Langmuir, 2006, 22(4): 1459-1468. |
8 | MINETTI C, BUFFONE C. Three-dimensional Marangoni cell in self-induced evaporating cooling unveiled by digital holographic microscopy[J]. Physical Review E, 2014, 89(1): 013007. |
9 | 余杨, 陈秀红, 张天顺, 等. 农药雾滴在烟叶叶面上蒸发时间的影响因素[J]. 农业工程学报, 2011, 27(11): 263-267. |
YU Yang, CHEN Xiuhong, ZHANG Tianshun, et al. Influence factors of evaporation time of pesticide droplets on different tobacco leaves[J]. Transactions of the CSAE, 2011, 27(11): 263-267. | |
10 | 骆骞, 毕勤成, 韩彦宁, 等. 盐水液滴降压环境下蒸发过程[J]. 化工学报, 2013, 64(6): 2001-2006. |
LUO Qian, BI Qincheng, HAN Yanning, et al. Evaporation process of brine droplet at reducing pressure[J]. CIESC Journal, 2013, 64(6): 2001-2006. | |
11 | 刘璐, 舒盼盼, 王茉, 等. 盐水液滴降压蒸发析盐过程数值模拟[J]. 化工进展, 2015, 34(1): 49-53. |
LIU Lu, SHU Panpan, WANG Mo, et al. Modeling of salt crystallization process of saline droplet during depressurization[J]. Chemical Industry and Engineering Progress, 2015, 34(1): 49-53. | |
12 | PIKNETT R, BEXON R. The evaporation of sessile or pendant drops in still air[J]. Journal of Colloid and Interface Science, 1977, 61(2): 336-350. |
13 | WANG X D, ZHANG Y, LEE D J, et al. Spreading of completely wetting or partially wetting power-law fluid on solid surface[J]. Langmuir, 2007, 23(18): 9258-9262. |
14 | HU H, LARSON G. Evaporation of a sessile droplet on a substrate[J]. Journal of Physical Chemistry B, 2002, 106(6): 1334-1344. |
15 | POPOV Y O. Evaporative deposition patterns: spatial dimensions of the deposit[J]. Physical Review E, 2005, 71(3): 036313. |
16 | ERBIL H Y. Evaporation of pure liquid sessile and spherical suspended drops: a review[J]. Advances in Colloid and Interface Science, 2012, 170(1/2): 67-86. |
17 | 王希志, 席川, 付志伟, 等. 基板温度对超疏水表面液滴蒸发影响[J]. 化学工程, 2020, 48(2): 25-29. |
WANG Xizhi, XI Chuan, FU Zhiwei, et al. Droplet evaporation analysis on superhydrophobic surface based on different substrate temperature[J]. Chemical Engineering, 2020, 48(2): 25-29. | |
18 | DAVID S, SEFIANE K, TADRIST L. Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007,298(1/2): 108-114. |
19 | DASH S, GARIMELLA S V. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis[J]. Langmuir, 2013, 29(34): 10785-10795. |
20 | PAN Z H, DASH S, WEIBEL J A, et al. Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates[J]. Langmuir, 2013, 29(51): 15831-15841. |
21 | CHEN X, WEIBEL J A, GARIMELLA S V. Water and ethanol droplet wetting transition during evaporation on omniphobic surfaces[J]. Scientific Reports, 2015, 5: 17110. |
22 | WU X, YANG Z, DUAN Y. Molecular dynamics analysis on the wetting properties of R32, R1234yf, and their mixture on pillar-type nanostructured substrates[J]. Langmuir, 2020, 36(1): 55-63. |
23 | SOBAC B, BRUTIN D. Thermal effects of the substrate on water droplet evaporation[J]. Physical Review E, 2012, 86(2): 021602. |
24 | PAN Z, WEIBEL J A, GARIMELLA S V. Influence of surface wettability on transport mechanisms governing water droplet evaporation[J]. Langmuir, 2014, 30(32): 9726-9730. |
25 | PAN Z, WEIBEL J A, GARIMELLA S V. Transport mechanisms during water droplet evaporation on heated substrates of different wettability[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119524. |
26 | XIE J, XU J, SHANG W, et al. Mode selection between sliding and rolling for droplet on inclined surface: effect of surface wettability[J]. International Journal of Heat and Mass Transfer, 2018, 122: 45-58. |
27 | LARKIN B K. Numerical solution of the equation of capillarity[J]. Journal of Colloid and Interface Science, 1967, 23(3): 305-312. |
28 | EISHERBINI A I, JACOBI A M. Liquid drops on vertical and inclined surfaces I. An experimental study of drop geometry[J]. Journal of Colloid and Interface Science, 2004, 273(2): 556-565. |
29 | TIMM M L, DEHDASHTI E, DARBAN A J, et al. Evaporation of a sessile droplet on a slope[J]. Scientific Reports, 2019, 9: 19803. |
30 | AL-SHARAFI A, YILBAS B S, ALI H, et al. A water droplet pinning and heat transfer characteristics on an inclined hydrophobic surface[J]. Scientific Reports, 2018, 8: 3061. |
31 | QI W, LI J, WEISENSEE P B. Evaporation of sessile water droplets on horizontal and vertical biphobic patterned surfaces[J]. Langmuir, 2019, 35(52): 17185-17192. |
[1] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[2] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[3] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[4] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[5] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[6] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[7] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[8] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[9] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[10] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
[11] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
[12] | LU Shijian, ZHANG Yuanyuan, WU Wenhua, YANG Fei, LIU Ling, KANG Guojun, LI Qingfang, CHEN Hongfu, WANG Ning, WANG Feng, ZHANG Juanjuan. Health risk assessment of nitrosamine pollutant diffusion in a million ton CO2 capture project [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3209-3216. |
[13] | LU Xingfu, DAI Bo, YANG Shiliang. Super-quadric discrete element method investigation of mixing behaviors of cylindrical particles in a rotating drum [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2252-2261. |
[14] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
[15] | LIU Houli, GU Zhonghao, YANG Kang, ZHANG Li. Effect of groove width on pool boiling heat transfer characteristics in 3D printing groove structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2282-2288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |